We investigate microscopic structure, adsorption, and electric properties of a mixture that consists of amphiphilic molecules and charged hard spheres in contact with uncharged or charged solid surfaces. The amphiphilic molecules are modeled as spheres composed of attractive and repulsive parts. The electrolyte component of the mixture is considered in the framework of the restricted primitive model (RPM). The system is studied using a density functional theory that combines fundamental measure theory for hard sphere mixtures, weighted density approach for inhomogeneous charged hard spheres, and a mean-field approximation to describe anisotropic interactions. Our principal focus is in exploring the effects brought by the presence of ions on the distribution of amphiphilic particles at the wall, as well as the effects of amphiphilic molecules on the electric double layer formed at solid surface. In particular, we have found that under certain thermodynamic conditions a long-range translational and orientational order can develop. The presence of amphiphiles produces changes of the shape of the differential capacitance from symmetric or non-symmetric bell-like to camel-like. Moreover, for some systems the value of the potential of the zero charge is non-zero, in contrast to the RPM at a charged surface.

1.
C.
Casagrande
,
P.
Fabre
,
E.
Raphaël
, and
M.
Veyssié
,
Europhys. Lett.
9
,
251
(
1989
).
2.
P.-G.
de Gennes
,
Angew. Chem., Int. Ed.
31
,
842
(
1992
).
3.
A.
Perro
,
S.
Reculusa
,
S.
Ravaine
,
E.
Bourgeat-Lami
, and
E.
Duguet
,
J. Mater. Chem.
15
,
3745
(
2005
).
4.
R. A.
Pavlick
,
S.
Sengupta
,
T.
McFadden
,
H.
Zhang
, and
A.
Sen
,
Angew. Chem., Int. Ed.
50
,
9374
(
2011
).
5.
S.-N.
Yin
,
C.-F.
Wang
,
Z.-Y.
Yu
,
J.
Wang
,
S.-S.
Liu
, and
S.
Chen
,
Adv. Mater.
23
,
2915
(
2011
).
6.
L.
Baraban
,
D.
Makarov
,
R.
Streubel
,
I.
Mänch
,
D.
Grimm
,
S.
Sanchez
, and
O. G.
Schmidt
,
ACS Nano
6
,
3383
(
2012
).
7.
A. H.
Grüschel
,
A.
Walther
,
T. I.
Löbling
,
J.
Schmelz
,
A.
Hanisch
,
H.
Schmalz
, and
A. H. E.
Müller
,
J. Am. Chem. Soc.
134
,
13850
(
2012
).
8.
X.
Meng
,
Y.
Guan
,
Z.
Zhang
, and
D.
Qiu
,
Langmuir
28
,
12472
(
2012
).
9.
A.
Walther
and
A. H. E.
Müller
,
Chem. Rev.
113
,
5194
(
2013
).
10.
P. K.
Ghosh
,
R. V. R.
Misko
,
F.
Marchesoni
, and
F.
Nori
,
Phys. Rev. Lett.
110
,
268301
(
2013
).
11.
A.
Krekhov
,
V.
Weith
, and
W.
Zimmermann
,
Phys. Rev. E
88
,
040302
(R) (
2013
).
12.
A.
Kumar
,
B. J.
Park
,
F.
Tu
, and
D.
Lee
,
Soft Matter
9
,
6604
(
2013
).
13.
M. M.
Moghani
and
B.
Khomami
,
Soft Matter
9
,
4815
(
2013
).
14.
F.
Schmid
and
M.
Schick
,
Phys. Rev. E
49
,
494
(
1994
).
15.
R.
Goetz
and
R.
Lipowsky
,
J. Chem. Phys.
108
,
7397
(
1998
).
16.
H.
Shinto
,
M.
Miyahara
, and
K.
Higashitani
,
Langmuir
16
,
3361
(
2000
).
17.
B.
Smit
,
A. G.
Schlijper
,
L. A. M.
Rupert
, and
N. M.
van Os
,
J. Phys. Chem.
94
,
6933
(
1990
).
18.
G.
Rosenthal
,
K. E.
Gubbins
, and
S. H. L.
Klapp
,
J. Chem. Phys.
136
,
174901
(
2012
).
19.
G.
Rosenthal
and
S. H. L.
Klapp
,
Int. J. Mol. Sci.
13
,
9431
(
2012
).
20.
A. P.
Hynninen
and
M.
Dijkstra
,
Phys. Rev. Lett.
94
,
138303
(
2005
).
21.
F.
Sciortino
,
Phys. Rev. Lett.
106
,
085703
(
2011
).
22.
W. L.
Miller
and
A.
Cacciuto
,
Phys. Rev. E
80
,
021404
(
2009
).
23.
V. V.
Vasilevskaya
and
V. A.
Ermilov
,
Polym. Sci., Ser. A
53
,
846
(
2011
).
24.
J. C.
Shelley
and
M. Y.
Shelley
,
Curr. Opin. Colloid Interface Sci.
5
,
101
(
2000
).
25.
H.
Bock
and
K. E.
Gubbins
,
Phys. Rev. Lett.
92
,
135701
(
2004
).
26.
G.
Rosenthal
, “
Theory and computer simulations of amphiphilic Janus particles
,” Ph.D. thesis (
TU Berlin
,
2012
).
27.
G.
Rosenthal
and
S. H. L.
Klapp
,
J. Chem. Phys.
134
,
154707
(
2011
).
28.
M.
Borówko
,
T.
Pöschel
,
S.
Sokołowski
, and
T.
Staszewski
,
J. Phys. Chem. B
117
,
1166
(
2013
).
29.
A.
Patrykiejew
,
S.
Sokołowski
,
Z.
Sokołowska
, and
Ja.
Ilnytskyi
,
J. Chem. Phys.
139
,
224711
(
2013
).
30.
C. S.
Dias
,
N. A. M.
Araujo
, and
M. M.
Telo da Gama
,
J. Chem. Phys.
139
,
154903
(
2013
).
31.
L.
Rovigatti
,
D.
de las Heras
,
J. M.
Tavares
,
M. M.
Telo da Gama
, and
F.
Sciortino
,
J. Chem. Phys.
138
,
164904
(
2013
).
32.
G.
Gompper
and
M.
Schick
, in
Phase Transitions and Critical Phenomena
, edited by
C.
Domb
and
J. L.
Lebowitz
(
Academic
,
London
,
1994
), Vol.
16
.
33.
I.
Napari
, “
Density functional theory of nucleation and phase behavior in binary fluid systems
,” Academic dissertation (Theoretical Physics Division, Department of Physics, Faculty of Science, University of Helsinki,
2000
).
34.
S.
Giura
,
B. G.
Márkus
,
S. H. L.
Klapp
, and
M.
Schoen
,
Phys. Rev. E
87
,
012313
(
2013
).
35.
M. R.
Housaindokht
,
H. E.
Hosseini
,
M. S. S.
Googheri
,
H.
Monhemi
,
R. I.
Najafabadi
,
N.
Ashraf
, and
M.
Gholizadeh
,
J. Mol. Liq.
177
,
94
(
2013
).
36.
B. D.
Marshall
,
C.
Emborsky
,
K. R.
Cox
, and
W. G.
Chapman
,
J. Phys. Chem. B
116
,
2730
(
2012
).
37.
R. B.
Thompson
,
T.
Jebb
, and
Y.
Wen
,
Soft Matter
8
,
9877
(
2012
).
38.
J.
Mondal
and
A.
Yethiraj
,
J. Phys. Chem. Lett.
2
,
2391
(
2011
).
39.
C. P.
Emborsky
,
Z.
Feng
,
K. R.
Cox
, and
W. G.
Chapman
,
Fluid Phase Equilib.
306
,
15
(
2011
).
40.
A. M.
Somoza
,
E.
Chacón
,
L.
Mederos
, and
P.
Tarazona
,
J. Phys.: Condens. Matter
7
,
5753
(
1995
).
41.
T.
Erdmann
,
M.
Kröger
, and
S.
Hess
,
Phys. Rev. E
67
,
041209
(
2003
).
42.
C.
Guerra
,
A. M.
Somoza
, and
M. M.
Telo da Gama
,
J. Chem. Phys.
109
,
1152
(
1998
).
43.
N.
Kern
and
D.
Frenkel
,
J. Chem. Phys.
118
,
9882
(
2003
).
44.
F.
Sciortino
,
A.
Giacometti
, and
G.
Pastore
,
Phys. Rev. Lett.
103
,
237801
(
2009
).
45.
Y. V.
Kalyuzhnyi
and
P. T.
Cummings
,
J. Chem. Phys.
139
,
104905
(
2013
).
46.
N. P.
Pardhy
and
B. M.
Budhlall
,
Langmuir
26
,
13130
(
2010
).
47.
S. K.
Das
,
S. S.
Mandal
, and
A. J.
Bhattacharyya
,
Energy Environ. Sci.
4
,
1391
(
2011
).
48.
D. A.
Christian
,
A.
Tian
,
W. G.
Ellenbroek
,
I.
Levental
,
K.
Rajagopal
,
P. A.
Janmey
,
A. J.
Liu
,
T.
Baumgart
, and
D. E.
Discher
,
Nat. Mater.
8
,
843
(
2009
).
49.
I. K.
Voets
,
R.
Fokkink
,
T.
Hellweg
,
S. M.
King
,
P.
de Waard
,
A.
de Keizer
, and
M. A. C.
Stuart
,
Soft Matter
5
,
999
(
2009
).
50.
P. R.
Chinnam
and
S. L.
Wunder
,
J. Mater. Chem. A
1
,
1731
(
2013
).
51.
Y.-X.
Yu
and
J.-Z.
Wu
,
J. Chem. Phys.
117
,
2368
(
2002
);
Y.-X.
Yu
and
J.-Z.
Wu
,
J. Chem. Phys.
117
,
10156
(
2002
);
Y.-X.
Yu
and
J.-Z.
Wu
,
J. Chem. Phys.
118
,
3835
(
2003
).
52.
Z.
Wang
,
L.
Liu
, and
I.
Neretnieks
,
J. Phys.: Condens. Matter
23
,
175002
(
2011
).
53.
Z.
Wang
,
L.
Liu
, and
I.
Neretnieks
,
J. Chem. Phys.
135
,
244107
(
2011
).
54.
O.
Pizio
,
S.
Sokołowski
, and
Z.
Sokołowska
,
J. Chem. Phys.
137
,
234705
(
2012
).
55.
O.
Pizio
and
S.
Sokołowski
,
J. Chem. Phys.
138
,
204715
(
2013
).
56.
See http://www.fftw.org for Documentation, v. 3.3.4.
57.
S. G.
Johnson
and
M.
Frigo
, “
Implementing FFTs in practice
,” in
Fast Fourier Transforms
, edited by
C. S.
Burrus
(
Connexions
,
Houston
,
2008
), Chap. 11.
58.
G. P.
Crawford
,
R.
Ondris-Crawford
,
S.
Žumer
, and
J. W.
Doane
,
Phys. Rev. Lett.
70
,
1838
(
1993
).
59.
R.
van Roij
,
M.
Dijkstra
, and
R.
Evans
,
Europhys. Lett.
49
,
350
(
2000
).
60.
B.
Alkhairalla
,
N.
Boden
,
E.
Cheadle
,
S. D.
Evans
,
J. R.
Henderson
,
H.
Fukushima
,
S.
Miyashita
,
H.
Schönherr
,
G. J.
Vancso
,
R.
Colorado
,
M.
Graupe
,
O. E.
Shmakova
, and
T. R.
Lee
,
Europhys. Lett.
59
,
410
(
2002
).
61.
J.
Wu
,
T.
Jiang
,
D.
Jiang
,
Z.
Jina
, and
D.
Henderson
,
Soft Matter
7
,
11222
(
2011
).
62.
S. J.
Clunie
and
B. T.
Ingram
, in
Adsorption from Solution at the Solid/Liquid Interface
, edited by
G. D.
Parfitt
and
C. H.
Rochester
(
Academic Press
,
New York
,
1983
), Chap. 3, p.
105
.
63.
A. B.
Jódar-Reyes
,
J. L.
Ortega-Vinuesa
, and
A.
Martn-Rodríguez
,
J. Colloid Interface Sci.
282
,
439
(
2005
).
You do not currently have access to this content.