This work considers how the properties of hydrogen bonded complexes, X–H⋯Y, are modified by the quantum motion of the shared proton. Using a simple two-diabatic state model Hamiltonian, the analysis of the symmetric case, where the donor (X) and acceptor (Y) have the same proton affinity, is carried out. For quantitative comparisons, a parametrization specific to the O–H⋯O complexes is used. The vibrational energy levels of the one-dimensional ground state adiabatic potential of the model are used to make quantitative comparisons with a vast body of condensed phase data, spanning a donor-acceptor separation (R) range of about 2.4 − 3.0 Å, i.e., from strong to weak hydrogen bonds. The position of the proton (which determines the X–H bond length) and its longitudinal vibrational frequency, along with the isotope effects in both are described quantitatively. An analysis of the secondary geometric isotope effect, using a simple extension of the two-state model, yields an improved agreement of the predicted variation with R of frequency isotope effects. The role of bending modes is also considered: their quantum effects compete with those of the stretching mode for weak to moderate H-bond strengths. In spite of the economy in the parametrization of the model used, it offers key insights into the defining features of H-bonds, and semi-quantitatively captures several trends.

1.
B.
Chen
,
I.
Ivanov
,
M. L.
Klein
, and
M.
Parrinello
,
Phys. Rev. Lett.
91
,
215503
(
2003
).
2.
J. A.
Morrone
and
R.
Car
,
Phys. Rev. Lett.
101
,
017801
(
2008
).
3.
M.
Ceriotti
,
J.
Cuny
,
M.
Parrinello
, and
D. E.
Manolopoulos
,
Proc. Natl. Acad. Sci. U.S.A.
110
,
15591
(
2013
).
4.
M.
Benoit
,
D.
Marx
, and
M.
Parrinello
,
Nature
392
,
258
(
1998
).
5.
B.
Pamuk
,
J. M.
Soler
,
R.
Ramírez
,
C. P.
Herrero
,
P. W.
Stephens
,
P. B.
Allen
, and
M.-V.
Fernández-Serra
,
Phys. Rev. Lett.
108
,
193003
(
2012
).
6.
M. E.
Tuckerman
,
D.
Marx
, and
M.
Parrinello
,
Nature
417
,
925
(
2002
).
7.
F.
Paesani
and
G. A.
Voth
,
J. Phys. Chem. C Lett.
112
,
324
(
2008
).
8.
Y.
Nagata
,
R. E.
Pool
,
E. H. G.
Backus
, and
M.
Bonn
,
Phys. Rev. Lett.
109
,
226101
(
2012
);
[PubMed]
J.
Liu
,
R. S.
Andino
,
C. M.
Miller
,
X.
Chen
,
D. M.
Wilkins
,
M.
Ceriotti
, and
D. E.
Manolopoulos
,
J. Phys. Chem. C
117
,
2944
(
2013
).
9.
T.
Markland
and
B.
Berne
,
Proc. Natl. Acad. Sci. U.S.A.
109
,
7988
(
2012
).
10.
J.
Chen
,
X.-Z.
Li
,
Q.
Zhang
,
A.
Michaelides
, and
E.
Wang
,
Phys. Chem. Chem. Phys.
15
,
6344
(
2013
).
11.
A. A.
Hassanali
,
J.
Cuny
,
M.
Ceriotti
,
C. J.
Pickard
, and
M.
Parrinello
,
J. Am. Chem. Soc.
134
,
8557
(
2012
).
12.
Y.
Horbatenko
and
S. F.
Vyboishchikov
,
ChemPhysChem
12
,
1118
(
2011
).
13.
A.
Bienko
,
Z.
Latajka
,
W.
Sawka-Dobrowolska
,
L.
Sobczyk
,
V.
Ozeryanskii
,
A.
Pozharskii
,
E.
Grech
, and
J.
Nowicka-Scheibe
,
J. Chem. Phys.
119
,
4313
(
2003
).
14.
X.-Z.
Li
,
M. I. J.
Probert
,
A.
Alavi
, and
A.
Michaelides
,
Phys. Rev. Lett.
104
,
066102
(
2010
).
15.
J.
Bothma
,
J.
Gilmore
, and
R. H.
McKenzie
,
New J. Phys.
12
,
055002
(
2010
), and references therein.
16.
C. A.
Reed
,
Acc. Chem. Res.
46
,
2567
(
2013
).
17.
R. H.
McKenzie
,
Chem. Phys. Lett.
535
,
196
(
2012
).
18.
G.
Gilli
and
P.
Gilli
,
The Nature of the Hydrogen Bond
(
Oxford
,
2009
).
20.
T.
Pacher
,
L. S.
Cederbaum
, and
H.
Köppel
,
J. Chem. Phys.
89
,
7367
(
1988
);
T.
Van Voorhis
,
T.
Kowalczyk
,
B.
Kaduk
,
L.-P.
Wang
,
C.-L.
Cheng
, and
Q.
Wu
,
Annu. Rev. Phys. Chem.
61
,
149
(
2010
);
[PubMed]
A.
Sirjoosingh
and
S.
Hammes-Schiffer
,
J. Chem. Theory Comput.
7
,
2831
(
2011
).
[PubMed]
21.
S. S.
Shaik
and
P. C.
Hiberty
,
A Chemists Guide to Valence Bond Theory
(
Wiley
,
2007
).
22.
R.
Vuilleumier
and
D.
Borgis
,
J. Mol. Struct.
436–437
,
555
(
1997
).
23.
D. E.
Sagnella
and
M. E.
Tuckerman
,
J. Chem. Phys.
108
,
2073
(
1998
).
24.
J.
Florian
,
J. Phys. Chem. A
106
,
5046
(
2002
).
25.
C.
Coulson
and
U.
Danielsson
,
Arkiv Fysik
8
,
245
(
1954
).
26.
A.
Warshel
and
R. M.
Weiss
,
J. Am. Chem. Soc.
102
,
6218
(
1980
);
A.
Warshel
,
Computer Modeling of Chemical Reactions in Enzymes and Solutions
(
Wiley
,
1991
).
27.
A similar diabatic state formulation is implicit in the seminal paper, “
Outlines of a theory of proton transfer
,”
J.
Horiuti
and
M.
Polanyi
,
Acta Physicochim. URSS
2
,
505
(
1935
).
J.
Horiuti
and
M.
Polanyi
, [A translation is reprinted in
J. Mol. Catal. A: Chem.
199
,
185
(
2003
).]
28.
R. S.
Mulliken
,
C. A.
Rieke
,
D.
Orloff
, and
H.
Orloff
,
J. Chem. Phys.
17
,
1248
(
1949
).
29.
For a recent review of empirical H-bond potentials see,
M.
Korth
,
ChemPhysChem
12
,
3131
(
2011
).
30.
S.
Lammers
,
S.
Lutz
, and
M.
Meuwly
,
J. Comput. Chem.
29
,
1048
(
2008
).
31.
I.
Geru
,
N.
Gorinchoy
, and
I.
Balan
,
Ukr. J. Phys.
57
,
1149
(
2012
).
32.
A simple choice of reduced mass would be that of OH or OD diatoms. However, since a double-well structure is involved, the mass of the proton motion is taken to be the mass of the asymmetric stretch coordinate in an O⋯H⋯O triatomic system: 1/M = 1/mH + 1/4μOO and likewise for the deuterium, where
$\mu _{OO}=\frac{1}{2}m_O$
μOO=12mO
. The numerical difference between this choice [M = 32/33 = 0.967 for protons] and the diatom variant is under 5% for both H and D, so the trends presented in this paper are not changed by either choice.
33.
D. T.
Colbert
and
W. H.
Miller
,
J. Chem. Phys.
96
,
1982
(
1992
).
34.
G. C.
Groenenboom
, The Discrete Variable Representation, Lecture Notes (
2001
), also available at http://www.theochem.ru.nl/files/dbase/gcg2001.eps.
35.
A. M.
Halpern
,
B. R.
Ramachandran
, and
E. D.
Glendening
,
J. Chem. Ed.
84
,
1067
(
2007
). FINDIF is available at http://carbon.indstate.edu/FINDIF.
36.
X.-Z.
Li
,
B.
Walker
, and
A.
Michaelides
,
Proc. Natl. Acad. Sci. U.S.A.
108
,
6369
(
2011
).
37.
R. L.
Redington
, in
Hydrogen Transfer Reactions
, edited by
J. T.
Hynes
,
J.
Klinman
,
H. H.
Limbach
, and
R. L.
Schowen
(
Wiley
,
2006
), Vol.
1
, p.
3
.
38.
W. W.
Cleland
,
Adv. Phys. Org. Chem.
44
,
1
(
2010
).
39.
A.
Warshel
and
A.
Papazyan
,
Proc. Natl. Acad. Sci. U.S.A.
93
,
13665
(
1996
).
40.
M. V.
Hosur
,
R.
Chitra
,
S.
Hegde
,
R. R.
Choudhury
,
A.
Das
, and
R. V.
Hosur
,
Crystallogr. Rev.
19
,
3
(
2013
).
41.
It can be shown that the condition for no energy barrier in the ground state is
where xa(R/2 − r0). This leads to a symmetric X–H–Y bond in the adiabatic limit when the nuclear degrees of freedom are treated classically. Quantum chemistry calculations56 suggest that for O–H–O complexes symmetric bonds occur when R ≃ 2.4 Å. Using this value and a ≃ 2.2 Å, r0 = 0.96 Å gives x = 0.52, and the above expression gives Δ(R) ≃ D. As an aside, we note that in the harmonic limit (i.e., x ≪ 1) the right hand side of the above expression reduces to 2x2 which for x = 0.52 gives Δ ≃ 0.6D. This significant difference from the value above shows the importance of using a full Morse potential for the diabatic state energies.
42.
C.
Andreani
,
D.
Colognesi
,
J.
Mayers
,
G. F.
Reiter
, and
R.
Senesi
,
Adv. Phys.
54
,
377
(
2005
).
43.
V.
Garbuio
,
C.
Andreani
,
S.
Imberti
,
A.
Pietropaolo
,
G. F.
Reiter
,
R.
Senesi
, and
M. A.
Ricci
,
J. Chem. Phys.
127
,
154501
(
2007
).
44.
S. E.
Pagnotta
,
F.
Bruni
,
R.
Senesi
, and
A.
Pietropaolo
,
Biophys. J.
96
,
1939
(
2009
).
45.
G. F.
Reiter
,
R.
Senesi
, and
J.
Mayers
,
Phys. Rev. Lett.
105
,
148101
(
2010
).
46.
G.
Reiter
,
C.
Burnham
,
D.
Homouz
,
P.
Platzman
,
J.
Mayers
,
T.
Abdul-Redah
,
A.
Moravsky
,
J.
Li
,
C.-K.
Loong
, and
A.
Kolesnikov
,
Phys. Rev. Lett.
97
,
247801
(
2006
).
47.
G. F.
Reiter
,
J.
Mayers
, and
P.
Platzman
,
Phys. Rev. Lett.
89
,
135505
(
2002
).
48.
D.
Homouz
,
G.
Reiter
,
J.
Eckert
,
J.
Mayers
, and
R.
Blinc
,
Phys. Rev. Lett.
98
,
115502
(
2007
).
49.
G. F.
Reiter
,
A. I.
Kolesnikov
,
S. J.
Paddison
,
P. M.
Platzman
,
A. P.
Moravsky
,
M. A.
Adams
, and
J.
Mayers
,
Phys. Rev. B
85
,
045403
(
2012
).
50.
P.
Gallo
,
M. A.
Ricci
, and
M.
Rovere
,
J. Chem. Phys.
116
,
342
(
2002
).
51.
J. A.
Morrone
,
L.
Lin
, and
R.
Car
,
J. Chem. Phys.
130
,
204511
(
2009
).
52.
L.
Lin
,
J. A.
Morrone
, and
R.
Car
,
J. Stat. Phys.
145
,
365
(
2011
).
53.
J. M.
Robertson
and
A. R.
Ubbelöhde
,
Proc. R. Soc. London, Ser. A
170
,
222
(
1939
).
54.
W. C.
Hamilton
and
J. A.
Ibers
,
Acta Cryst.
16
,
1209
(
1963
).
55.
H-H.
Limbach
,
M.
Pietrzak
,
H.
Benedict
,
P.
Tolstoy
,
N.
Golubev
, and
G.
Denisov
,
J. Mol. Struct.
706
,
115
(
2004
).
56.
H.-H.
Limbach
,
P.
Tolstoy
,
N.
Prez-Hernndez
,
J.
Guo
,
I.
Shenderovich
, and
G.
Denisov
,
Isr. J. Chem.
49
,
199
(
2009
).
57.
B. C. K.
Ip
,
I.
Shenderovich
,
P.
Tolstoy
,
J.
Frydel
,
G.
Denisov
,
G.
Buntkowsky
, and
H.-H.
Limbach
,
J. Phys. Chem. A
116
,
11370
(
2012
).
58.
G. K. H.
Madsen
,
G. J.
McIntyre
,
B.
Schitt
, and
F. K.
Larsen
,
Chem. Eur. J.
13
,
5539
(
2007
).
59.
60.
N. D.
Sokolov
,
M. V.
Vener
, and
V. A.
Savel'ev
,
J. Mol. Struct.
177
,
93
(
1988
).
61.
T.
Saitoh
,
K.
Mori
, and
R.
Itoh
,
Chem. Phys.
60
,
161
(
1981
).
62.
63.
64.
P.
Gilli
,
V.
Bertolasi
,
V.
Ferretti
, and
G.
Gilli
,
J. Am. Chem. Soc.
116
,
909
(
1994
).
65.
A.
Novak
,
Struct. Bonding
18
,
177
(
1974
).
66.
E.
Libowitzky
,
Monatsh. Chem.
130
,
1047
(
1999
).
67.
Variations with pressure (which changes R) are reviewed by
S. K.
Sikka
and
S. M.
Sharma
,
Phase Transitions
81
,
907
(
2008
).
68.
Some complexities associated with the correlation between the X–H stretch frequency and the donor-acceptor distance R are discussed in detail by
G.
Pirc
,
J.
Mavri
,
M.
Novic
, and
J.
Stare
,
J. Phys. Chem. B
116
,
7221
(
2012
).
69.
Note that the harmonic curve shown in Figure 6 disagrees with the curve shown in Ref. 17. Unfortunately, the computer code used to calculate the latter contained an error.
70.
U.
Weiss
,
Quantum Dissipative Systems
, 4th ed. (
World Scientific
,
2012
).
71.
J.
Grdadolnik
, private communication (2013); see, for example, Figure 5 in
L.
Sobczyk
,
M.
Obrzud
, and
A.
Filarowski
,
Molecules
18
,
4467
(
2013
).
72.
G.
Pirc
,
J.
Stare
, and
J.
Mavri
,
J. Chem. Phys.
132
,
224506
(
2010
).
73.
A. F.
Goncharov
,
V. V.
Struzhkin
,
H.-k.
Mao
, and
R. J.
Hemley
,
Phys. Rev. Lett.
83
,
1998
(
1999
).
74.
K.
Aoki
,
H.
Yamawaki
,
M.
Sakashita
, and
H.
Fujihisa
,
Phys. Rev. B
54
,
15673
(
1996
).
75.
S.
Habershon
,
T.
Markland
, and
D.
Manolopoulos
,
J. Chem. Phys.
131
,
024501
(
2009
).
76.
G.
Romanelli
,
M.
Ceriotti
,
D. E.
Manolopoulos
,
C.
Pantalei
,
R.
Senesi
, and
C.
Andreani
,
J. Phys. Chem. Lett.
4
,
3251
(
2013
).
77.
J. A.
Belot
,
J.
Clark
,
J.
Cowan
,
G.
Harbison
,
A.
Kolesnikov
,
Y.-S.
Kye
,
A.
Schultz
,
C.
Silvernail
, and
X.
Zhao
,
J. Phys. Chem. B
108
,
6922
(
2004
).
78.
C.
Swalina
,
Q.
Wang
,
A.
Chakraborty
, and
S.
Hammes-Schiffer
,
J. Phys. Chem. A
111
,
2206
(
2007
).
79.
M. V.
Vener
, in
Hydrogen Transfer Reactions
, edited by
J. T.
Hynes
,
J.
Klinman
,
H. H.
Limbach
, and
R. L.
Schowen
(
Wiley
,
2006
), Vol.
1
, p.
273
.
80.
S.
Koval
,
J.
Kohanoff
,
R. L.
Migoni
, and
E.
Tosatti
,
Phys. Rev. Lett.
89
,
187602
(
2002
).
81.
N. D.
Sokolov
,
M. V.
Vener
, and
V. A.
Savel'ev
,
J. Mol. Struct.
222
,
365
(
1990
).
82.
Y.
Yang
and
O.
Kühn
,
Chem. Phys. Lett.
505
,
1
(
2011
).
83.
Y.
Yang
and
O.
Kühn
,
Z. Phys. Chem.
222
,
1375
(
2008
).
84.
A simple parametrisation of this will involve the steric term associated with the Pauli repulsion between the electron clouds of the donor and acceptor atoms85 which decays exponentially with R. One also needs to include the effects of electrostatic interactions, that become increasingly important at larger R.23 
85.
F.
Weinhold
and
C.
Landis
,
Valency and Bonding: A Natural Bond Orbital Donor-Acceptor Perspective
(
Cambridge University Press
,
Cambridge
,
2005
), p.
599
.
86.
H.
Romanowski
and
L.
Sobczyk
,
Chem. Phys.
19
,
361
(
1977
).
87.
E.
Grech
,
Z.
Malarski
, and
L.
Sobczyk
,
Chem. Phys. Lett.
128
,
259
(
1986
).
88.
A study13 of the proton sponge, 2,7-dibromo-1,8-bis-dimethylamino-naphthalene (Br2DMAN), found no secondary geometric isotope effect [the N⋯N distance was R = 2.547 Å], and intense IR modes at 589 and 284 cm−1 for H and D, respectively. This gives an isotope frequency ratio of 1.67. These experimental results are consistent with the potential that we use for O–H⋯O bonds with R = 2.4 Å. A similar correspondence was pointed out in Ref. 87.
89.
The validity of Eq. (9) requires that
\smash{$K(R) \gg {d^2 Z \over d R^2}(R)$}
K(R)d2ZdR2(R)
. Estimating the curvature from Figure 7 we see the two terms are of comparable magnitude for R ≃ 2.4, 2.55 Å. However, we have parametrised K(R) from experimental data for X-Y stretch frequencies, not classical calculations, which implicitly includes the second order corrections, i.e.,
\smash{$K_{eff}(R) = K(R) + {d^2 Z \over d R^2}(R)$}
Keff(R)=K(R)+d2ZdR2(R)
. But this highlights how the X-Y stretch frequency for moderate to strong bonds may have a significant contribution from the zero-point energy of the X–H stretch and exhibit a surprisingly large dependence on hydrogen-deuterium substitution.
90.
P. B.
Allen
,
Philos. Mag. B
70
,
527
(
1994
).
91.
K.
Suzuki
,
M.
Tachikawa
, and
M.
Shiga
,
J. Chem. Phys.
138
,
184307
(
2013
).
92.
K.
Suzuki
,
H.
Ishibashi
,
K.
Yagi
,
M.
Shiga
, and
M.
Tachikawa
,
Prog. Theor. Chem. Phys.
26
,
207
(
2012
).
93.
J.
Waluk
,
Acc. Chem. Res.
39
,
945
(
2006
).
94.
M.
Benoit
and
D.
Marx
,
ChemPhysChem
6
,
1738
(
2005
).
95.
This Hamiltonian is also discussed in
H.
Köppel
,
W.
Domcke
, and
L. S.
Cederbaum
,
Adv. Chem. Phys.
57
,
59
(
1984
). It is also referred to as the E × β Jahn-Teller model.
96.
S.
Paganelli
and
S.
Ciuchi
,
J. Phys.: Condens. Matter
18
,
7669
(
2006
).
97.
F.
Iachello
and
R. D.
Levine
,
Algebraic Theory of Molecules
(
Oxford University Press
,
Oxford
,
1995
), Section 2.8.
98.
L. K.
McKemmish
,
R. H.
McKenzie
,
N. S.
Hush
, and
J. R.
Reimers
,
J. Chem. Phys.
135
,
244110
(
2011
).
99.
J. F.
Stanton
,
J. Chem. Phys.
133
,
174309
(
2010
).
You do not currently have access to this content.