The quasi-steady-state approximation (or stochastic averaging principle) is a useful tool in the study of multiscale stochastic systems, giving a practical method by which to reduce the number of degrees of freedom in a model. The method is extended here to slow–fast systems in which the fast variables exhibit metastable behaviour. The key parameter that determines the form of the reduced model is the ratio of the timescale for the switching of the fast variables between metastable states to the timescale for the evolution of the slow variables. The method is illustrated with two examples: one from biochemistry (a fast-species-mediated chemical switch coupled to a slower varying species), and one from ecology (a predator–prey system). Numerical simulations of each model reduction are compared with those of the full system.

1.
P.
Thomas
,
A. V.
Straube
, and
R.
Grima
,
BMC Syst. Biol.
6
,
39
(
2012
).
2.
H. H.
McAdams
and
A.
Arkin
,
Trends Genet.
15
,
65
(
1999
).
3.
E. M.
Ozbudak
,
M.
Thattai
,
H. N.
Lim
,
B. I.
Shraiman
, and
A.
van Oudenaarden
,
Nature (London)
427
,
737
(
2004
).
4.
J.-W.
Veening
,
W. K.
Smits
, and
O. P.
Kuipers
,
Annu. Rev. Microbiol.
62
,
193
(
2008
).
5.
W.
Horsthemke
and
R.
Lefever
,
Noise-Induced Transitions: Theory and Applications in Physics, Chemistry, and Biology
, 1st ed. (
Springer-Verlag
,
Berlin
,
1984
), Vol.
15
.
6.
R.
Wang
,
J. A.
Dearing
,
P. G.
Langdon
,
E.
Zhang
,
X.
Yang
,
V.
Dakos
, and
M.
Scheffer
,
Nature (London)
492
,
419
(
2012
).
7.
W.
E
,
D.
Liu
, and
E.
Vanden-Eijnden
,
Commun. Pure Appl. Math.
58
,
1544
(
2005
).
8.
A. C.
Staver
,
S.
Archibald
, and
S. A.
Levin
,
Science
334
,
230
(
2011
).
9.
M.
Scheffer
,
S. R.
Carpenter
,
T. M.
Lenton
,
J.
Bascompte
,
W.
Brock
,
V.
Dakos
,
J.
van de Koppel
,
I. A.
van de Leemput
,
S. A.
Levin
,
E. H.
van Nes
,
M.
Pascual
, and
J.
Vandermeer
,
Science
338
,
344
(
2012
).
10.
11.
M.
Desroches
,
J.
Guckenheimer
,
B.
Krauskopf
,
C.
Kuehn
,
H. M.
Osinga
, and
M.
Wechselberger
,
SIAM Rev.
54
,
211
(
2012
).
12.
P.
Boxler
,
Probab. Theory Rel.
83
,
509
(
1989
).
13.
G. W. A.
Constable
,
A. J.
McKane
, and
T.
Rogers
,
J. Phys. A: Math. Theor.
46
,
295002
(
2013
).
14.
G.
Wainrib
,
Electron. Commun. Probab.
18
,
51
(
2013
).
15.
C. W.
Gardiner
,
Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences
, 3rd ed. (
Springer-Verlag
,
New York
,
2004
).
16.
Y.
Cao
,
D. T.
Gillespie
, and
L. R.
Petzold
,
J. Chem. Phys.
122
,
014116
(
2005
).
17.
C. V.
Rao
and
A. P.
Arkin
,
J. Chem. Phys.
118
,
4999
(
2003
).
18.
J. M.
Newby
and
S. J.
Chapman
, “
Metastable behavior in Markov processes with internal states
,”
J. Math. Biol.
(published online).
19.
M. J.
Ward
, in
Analyzing Multiscale Phenomena Using Singular Perturbation Methods
, edited by
J.
Cronin
and
R.
O'Malley
(
AMS Publications
,
Providence, RI
,
1998
), pp.
151
184
.
20.
R.
Hinch
and
S. J.
Chapman
,
Eur. J. Appl. Math.
16
,
427
(
2005
).
22.
C.
Hartmann
,
R.
Banisch
,
M.
Sarich
,
T.
Badowski
, and
C.
Schütte
,
Entropy
16
,
350
(
2013
).
23.
F.
Schlögl
,
Z. Phys.
253
,
147
(
1972
).
24.
R.
Erban
,
S. J.
Chapman
,
I. G.
Kevrekidis
, and
T.
Vejchodský
,
SIAM J. Appl. Math.
70
,
984
(
2009
).
25.
Some authors would use the convention that the propensity function for the third reaction, |$2X\, \overset{k_3/\epsilon}{\hbox to 1.5pc {\rightarrowfill} } \,3X$|2Xk3/ε3X, is k3x(x − 1)/2ε instead of k3x(x − 1)/ε. See Ref. 26 for a discussion on conventions regarding reaction rates.
26.
D. T.
Gillespie
,
J. Phys. Chem.
81
,
2340
(
1977
).
27.
M. A.
Gibson
and
J.
Bruck
,
J. Phys. Chem. A
104
,
1876
(
2000
).
28.
Y.
Cao
,
D. T.
Gillespie
, and
L. R.
Petzold
,
J. Chem. Phys.
124
,
044109
(
2006
).
29.
D. T.
Gillespie
,
J. Chem. Phys.
113
,
297
(
2000
).
30.
This is in contrast to the Parallel Replica Algorithm,32 which defines quasi-stationary distributions using absorbing boundary conditions.
31.
H.
Risken
, “
The Fokker-Planck equation
,” in
Methods of Solution and Applications
(
Springer
,
1996
).
32.
C.
Le Bris
,
T.
Lelièvre
,
M.
Luskin
, and
D.
Perez
,
Monte Carlo Methods Appl.
18
,
119
(
2012
).
33.
O.
Ovaskainen
and
B.
Meerson
,
Trends Ecol. Evol.
25
,
643
(
2010
).
34.
36.
S. J.
Schreiber
,
Theor. Popul. Biol.
64
,
201
(
2003
).
37.
G. M.
Palamara
,
G. W.
Delius
,
M. J.
Smith
, and
O. L.
Petchey
,
J. Theor. Biol.
334
,
61
(
2013
).
38.
39.
P.
Turchin
,
Complex Population Dynamics: A Theoretical/Empirical Synthesis
(
Princeton University Press
,
2003
).
40.
J.
Grasman
and
R.
HilleRisLambers
,
Ecol. Model.
103
,
71
(
1997
).
41.
This is because if we waited long enough in the stochastic model, extinction would eventually occur, and therefore the stationary density is not defined. In other words, there is a “leak” at x = 0.
42.
D. A.
Kessler
and
N. M.
Shnerb
,
J. Stat. Phys.
127
,
861
(
2007
).
43.
M.
Assaf
and
B.
Meerson
,
Phys. Rev. E
81
,
021116
(
2010
).
44.
J.-H.
Prinz
,
H.
Wu
,
M.
Sarich
,
B.
Keller
,
M.
Senne
,
M.
Held
,
J. D.
Chodera
,
C.
Schütte
, and
F.
Noé
,
J. Chem. Phys.
134
,
174105
(
2011
).
45.
E.
Abad
,
J.
Reingruber
, and
M. S. P.
Sansom
,
J. Chem. Phys.
130
,
085101
(
2009
).
46.
W.
Chen
,
R.
Erban
, and
S. J.
Chapman
,
SIAM J. Appl. Math.
74
,
208
(
2014
).
47.
P. C.
Bressloff
and
J. M.
Newby
,
SIAM J. Appl. Dyn. Syst.
12
,
1394
(
2013
).
48.
V.
Dakos
,
S. R.
Carpenter
,
W. A.
Brock
,
A. M.
Ellison
,
V.
Guttal
,
A. R.
Ives
,
S.
Kéfi
,
V.
Livina
,
D. A.
Seekell
,
E. H.
van Nes
, and
M.
Scheffer
,
PLoS ONE
7
,
e41010
(
2012
).
49.
M.
Geissbuehler
and
T.
Lasser
,
Opt. Express
21
,
9862
(
2013
).
50.
P. C.
Bressloff
, and
J. M.
Newby
, in
First-Passage Phenomena and Their Applications
, edited by
R.
Metzler
,
G.
Oshanin
, and
S.
Redner
(
World Scientific
,
2013
), pp.
1
29
.
You do not currently have access to this content.