We present mixed quantum classical calculations of the proton transfer (PT) reaction rates represented by a double well system coupled to a dissipative bath. The rate constants are calculated within the so called nontraditional view of the PT reaction, where the proton motion is quantized and the solvent polarization is used as the reaction coordinate. Quantization of the proton degree of freedom results in a problem of non-adiabatic dynamics. By employing the reactive flux formulation of the rate constant, the initial sampling starts from the transition state defined using the collective reaction coordinate. Dynamics of the collective reaction coordinate is treated classically as over damped diffusive motion, for which the equation of motion can be derived using the path integral, or the mixed quantum classical Liouville equation methods. The calculated mixed quantum classical rate constants agree well with the results from the numerically exact hierarchical equation of motion approach for a broad range of model parameters. Moreover, we are able to obtain contributions from each vibrational state to the total reaction rate, which helps to understand the reaction mechanism from the deep tunneling to over the barrier regimes. The numerical results are also compared with those from existing approximate theories based on calculations of the non-adiabatic transmission coefficients. It is found that the two-surface Landau-Zener formula works well in calculating the transmission coefficients in the deep tunneling regime, where the crossing point between the two lowest vibrational states dominates the total reaction rate. When multiple vibrational levels are involved, including additional crossing points on the free energy surfaces is important to obtain the correct reaction rate using the Landau-Zener formula.

1.
R. P.
Bell
,
The Proton in Chemistry
(
Chapman and Hall
,
London
,
1973
).
2.
Hydrogen-Transfer Reactions
, edited by
J. T.
Hynes
,
J. P.
Klinman
,
H.-H.
Limbach
, and
R. L.
Schowen
(
Wiley-VCH
,
Weinheim
,
2007
).
3.
R. P.
Bell
,
The Tunnel Effect in Chemistry
(
Chapman and Hall
,
London
,
1980
).
4.
W. H.
Miller
,
Faraday Discuss.
110
,
1
(
1998
).
5.
E.
Pollak
and
P.
Talkner
,
Chaos
15
,
026116
(
2005
).
6.
K. S.
Peter
,
Acc. Chem. Res.
42
,
89
(
2009
).
7.
D. G.
Truhlar
,
J. Phys. Org. Chem.
23
,
660
(
2010
).
8.
P. M.
Kiefer
and
J. T.
Hynes
,
J. Phys. Org. Chem.
23
,
632
(
2010
).
9.
J. P.
Bothma
,
J. B.
Gilmore
, and
R. H.
McKenzie
,
New J. Phys.
12
,
055002
(
2010
).
10.
H.
Eyring
,
J. Chem. Phys.
3
,
107
(
1935
).
11.
P.
Pechukas
,
Annu. Rev. Phys. Chem.
32
,
159
(
1981
).
12.
P.
Hänggi
,
P.
Talkner
, and
M.
Borkovec
,
Rev. Mod. Phys.
62
,
251
(
1990
).
13.
D. G.
Truhlar
,
B. C.
Garrett
, and
S. J.
Klippenstein
,
J. Phys. Chem.
100
,
12771
(
1996
).
14.
E.
Wigner
,
Z. Phys. Chem.
19
,
203
(
1932
).
15.
D. G.
Truhlar
,
J.
Gao
,
C.
Alhambra
,
M.
Garcia-Viloca
,
J.
Corchado
,
M. L.
Sanchez
, and
J.
Villá
,
Acc. Chem. Res.
35
,
341
(
2002
).
16.
J.
Pu
,
J.
Gao
, and
D. G.
Truhlar
,
Chem. Rev.
106
,
3140
(
2006
).
17.
W. H.
Miller
,
J. Chem. Phys.
62
,
1899
(
1975
).
18.
P. G.
Wolynes
,
Phys. Rev. Lett.
47
,
968
(
1981
).
19.
20.
G. A.
Voth
,
D.
Chandler
, and
W. H.
Miller
,
J. Chem. Phys.
91
,
7749
(
1989
).
21.
R. R.
Dogonadze
,
A. M.
Kuznetsov
, and
V. G.
Levich
,
Electrochim. Acta
13
,
1025
(
1968
).
22.
E. D.
German
,
A. M.
Kuznetsov
, and
R. R.
Dogonadze
,
J. Chem. Soc. Faraday Trans. II
76
,
1128
(
1980
).
23.
A. M.
Kuznetsov
,
Charge Transfer in Physics, Chemistry and Biology: Physical Mechanisms of Elementary Processes and an Introduction to the Theory
(
Gordon and Breach
,
Amsterdam
,
1995
).
24.
D.
Borgis
and
J. T.
Hynes
,
J. Phys. Chem.
100
,
1118
(
1996
).
25.
P. M.
Kiefer
and
J. T.
Hynes
,
J. Phys. Chem. A
108
,
11793
(
2004
).
26.
P. M.
Kiefer
and
J. T.
Hynes
,
J. Phys. Chem. A
108
,
11809
(
2004
).
27.
H.
Liu
and
A.
Warshel
,
Biochemistry
46
,
6011
(
2007
).
28.
R.
Collepardo-Guevara
,
I. R.
Craig
, and
D. E.
Manolopoulos
,
J. Chem. Phys.
128
,
144502
(
2008
).
29.
N.
Boekelheide
,
R.
Salomón-Ferrer
, and
T. F.
Miller
,
Proc. Natl. Acad. Sci. U.S.A.
108
,
16159
(
2011
).
30.
P. K.
Agarwal
,
S. R.
Billeter
, and
S.
Hammes-Schiffer
,
J. Phys. Chem. B
106
,
3283
(
2002
).
31.
R. A.
Marcus
,
J. Chem. Phys.
24
,
966
(
1956
).
32.
R. A.
Marcus
,
Rev. Mod. Phys.
65
,
599
(
1993
).
33.
M.
Topaler
and
N.
Makri
,
J. Chem. Phys.
101
,
7500
(
1994
).
34.
H.
Wang
,
D. E.
Skinner
, and
M.
Thoss
,
J. Chem. Phys.
125
,
174502
(
2006
).
35.
I. R.
Craig
,
M.
Thoss
, and
H. B.
Wang
,
J. Chem. Phys.
127
,
144503
(
2007
).
36.
L.-P.
Chen
and
Q.
Shi
,
J. Chem. Phys.
130
,
134505
(
2009
).
37.
Q.
Shi
,
L. L.
Zhu
, and
L. P.
Chen
,
J. Chem. Phys.
135
,
044505
(
2011
).
38.
H.
Wang
,
X.
Sun
, and
W. H.
Miller
,
J. Chem. Phys.
108
,
9726
(
1998
).
39.
H.
Wang
,
M.
Thoss
, and
W. H.
Miller
,
J. Chem. Phys.
112
,
47
(
2000
).
40.
T.
Yamamoto
,
H.
Wang
, and
W. H.
Miller
,
J. Chem. Phys.
116
,
7335
(
2002
).
41.
J.-L.
Liao
and
E.
Pollak
,
J. Chem. Phys.
116
,
2718
(
2002
).
42.
R.
Hernandez
and
G. A.
Voth
,
Chem. Phys.
233
,
243
(
1998
).
43.
E.
Geva
,
Q.
Shi
, and
G. A.
Voth
,
J. Chem. Phys.
115
,
9209
(
2001
).
44.
Q.
Shi
and
E.
Geva
,
J. Chem. Phys.
116
,
3223
(
2002
).
45.
I. R.
Craig
and
D. E.
Manolopoulos
,
J. Chem. Phys.
122
,
084106
(
2005
).
46.
S.
Habershon
,
D. E.
Manolopoulos
,
T. E.
Markland
, and
T. F.
Miller
,
Annu. Rev. Phys. Chem.
64
,
387
(
2013
).
47.
L.
Landau
,
Phys. Z. Sow.
2
,
46
(
1932
).
48.
C.
Zener
,
Proc. R. Soc. London, Ser. A
137
,
696
(
1932
).
49.
H.
Azzouz
and
D.
Borgis
,
J. Chem. Phys.
98
,
7361
(
1993
).
50.
A.
Staib
,
D.
Borgis
, and
J. T.
Hynes
,
J. Chem. Phys.
102
,
2487
(
1995
).
51.
S.
Hammes-Schiffer
and
J. C.
Tully
,
J. Chem. Phys.
101
,
4657
(
1994
).
52.
J.-Y.
Fang
and
S.
Hammes-Schiffer
,
J. Chem. Phys.
110
,
11166
(
1999
).
53.
S. Y.
Kim
and
S.
Hammes-Schiffer
,
J. Chem. Phys.
124
,
244102
(
2006
).
54.
G.
Hanna
and
R.
Kapral
,
J. Chem. Phys.
122
,
244505
(
2005
).
55.
G.
Hanna
and
R.
Kapral
,
J. Chem. Phys.
128
,
164520
(
2008
).
56.
B. J.
Ka
and
W. H.
Thompson
,
J. Phys. Chem. B
114
,
7535
(
2010
).
57.
H. D.
Meyer
and
W. H.
Miller
,
J. Chem. Phys.
70
,
3214
(
1979
).
58.
G.
Stock
and
M.
Thoss
,
Phys. Rev. Lett.
78
,
578
(
1997
).
59.
A.
Kuznetsov
and
J.
Ulstrup
,
Can. J. Chem.
77
,
1085
(
1999
).
60.
S.
Hammes-Schiffer
,
Acc. Chem. Res.
39
,
93
(
2006
).
61.
D.
Chandler
,
J. Chem. Phys.
68
,
2959
(
1978
).
62.
W. H.
Miller
,
S. D.
Schwartz
, and
J. W.
Tromp
,
J. Chem. Phys.
79
,
4889
(
1983
).
63.
D.
Chandler
, in
Classical and Quantum Dynamics in Condensed Phase Simulations
, edited by
B. J.
Berne
,
G.
Ciccotti
, and
D. F.
Coker
(
World Scientific
,
Singapore
,
1998
), Chap. 2, pp.
25
49
.
64.
A.
Nitzan
,
Chemical Dynamics in Condensed Phases
(
Oxford University Press
,
New York
,
2006
).
65.
66.
R.
Kapral
and
G.
Ciccotti
,
J. Chem. Phys.
110
,
8919
(
1999
).
67.
K.
Ando
and
M.
Santer
,
J. Chem. Phys.
118
,
10399
(
2003
).
68.
Q.
Shi
and
E.
Geva
,
J. Chem. Phys.
121
,
3393
(
2004
).
69.
A. O.
Caldeira
and
A. J.
Leggett
,
Physica A
121
,
587
(
1983
).
70.
A.
Garg
,
J. N.
Onuchic
, and
V.
Ambegaokar
,
J. Chem. Phys.
83
,
4491
(
1985
).
71.
L.-L.
Zhu
,
H.
Liu
, and
Q.
Shi
,
New J. Phys.
15
,
095020
(
2013
).
72.
Q.
Shi
,
L. P.
Chen
,
G. J.
Nan
,
R. X.
Xu
, and
Y. J.
Yan
,
J. Chem. Phys.
130
,
084105
(
2009
).
75.
Q.
Shi
and
E.
Geva
,
J. Chem. Phys.
131
,
034511
(
2009
).
76.
D. Y.
Yang
and
R. I.
Cukier
,
J. Chem. Phys.
91
,
281
(
1989
).
77.
Q.
Shi
,
L. P.
Chen
,
G. J.
Nan
,
R. X.
Xu
, and
Y. J.
Yan
,
J. Chem. Phys.
130
,
164518
(
2009
).
78.
Y.
Tanimura
and
P. J.
Wolynes
,
Phys. Rev. A
43
,
4131
(
1991
).
79.
Y.
Tanimura
and
P. J.
Wolynes
,
J. Chem. Phys.
96
,
8485
(
1992
).
80.
A.
Ishizaki
and
Y.
Tanimura
,
J. Chem. Phys.
123
,
014503
(
2005
).
81.
J. E.
Straub
and
B. J.
Berne
,
J. Chem. Phys.
87
,
6111
(
1987
).
82.
P.
Hänggi
,
H.
Grabert
,
G. L.
Ingold
, and
U.
Weiss
,
Phys. Rev. Lett.
55
,
761
(
1985
).
83.
A. V.
Barzykin
,
P. A.
Frantsuzov
,
K.
Seki
, and
M.
Tachiya
,
Adv. Chem. Phys.
123
,
511
(
2002
).
84.
J.
Ankerhold
and
H.
Lehle
,
J. Chem. Phys.
120
,
1436
(
2004
).
85.
R. J.
Cave
and
M. D.
Newton
,
Chem. Phys. Lett.
249
,
15
(
1996
).
87.
Y.
Kayanuma
and
H.
Nakayama
,
Phys. Rev. B
57
,
13099
(
1998
).
88.
L.-L.
Zhu
,
H.
Liu
, and
Q.
Shi
,
J. Chem. Phys.
137
,
194106
(
2012
).
89.
V. A.
Benderskii
,
V. I.
Goldanskii
, and
D. E.
Makarov
,
Chem. Phys. Lett.
186
,
517
(
1991
).
90.
V. A.
Benderskii
,
D. E.
Makarov
, and
C. A.
Wight
,
Adv. Chem. Phys.
88
,
1
(
1994
).
91.
D.
Borgis
and
J. T.
Hynes
,
J. Chem. Phys.
94
,
3619
(
1991
).
92.
A.
Suárez
and
R.
Silbey
,
J. Chem. Phys.
95
,
9115
(
1991
).
93.
Y.
Tanimura
,
J. Phys. Soc. Jpn.
75
,
082001
(
2006
).
You do not currently have access to this content.