The dimer method is a minimum mode following algorithm for finding saddle points on a potential energy surface of atomic systems. Here, the dimer method is extended to include the cell degrees of freedom for periodic solid-state systems. Using this method, reaction pathways of solid-solid phase transitions can be determined without having to specify the final state structure or reaction mechanism. Example calculations include concerted phase transitions between CdSe polymorphs and a nucleation and growth mechanism for the A15 to BCC transition in Mo.

1.
C.
Wert
and
C.
Zener
,
Phys. Rev.
76
,
1169
(
1949
).
2.
G. H.
Vineyard
,
J. Phys. Chem. Solids
3
,
121
(
1957
).
3.
G.
Henkelman
and
H.
Jónsson
,
J. Chem. Phys.
111
,
7010
(
1999
).
4.
R. A.
Olsen
,
G. J.
Kroes
,
G.
Henkelman
,
A.
Arnaldsson
, and
H.
Jónsson
,
J. Chem. Phys.
121
,
9776
(
2004
).
5.
G.
Henkelman
,
B. P.
Uberuaga
, and
H.
Jónsson
,
J. Chem. Phys.
113
,
9901
(
2000
).
6.
G.
Henkelman
and
H.
Jónsson
,
J. Chem. Phys.
113
,
9978
(
2000
).
7.
L.
Xu
and
G.
Henkelman
,
J. Chem. Phys.
129
,
114104
(
2008
).
8.
A. B.
Bortz
,
M. H.
Kalos
, and
J. L.
Lebowitz
,
J. Comput. Phys.
17
,
10
(
1975
).
9.
D. T.
Gillespie
,
J. Comput. Phys.
22
,
403
(
1976
).
10.
A.
Heyden
,
A. T.
Bell
, and
F. J.
Keil
,
J. Chem. Phys.
123
,
224101
(
2005
).
11.
J.
Kästner
and
P.
Sherwood
,
J. Chem. Phys.
128
,
014106
(
2008
).
12.
D.
Sheppard
,
P.
Xiao
,
W.
Chemelewski
,
D. D.
Johnson
, and
G.
Henkelman
,
J. Chem. Phys.
136
,
074103
(
2012
).
13.
K. J.
Caspersen
and
E. A.
Carter
,
Proc. Natl. Acad. Sci. U.S.A.
102
,
6738
(
2005
).
14.
R. A.
Horn
and
C. R.
Johnson
,
Matrix Analysis
(
Cambridge University Press
,
Cambridge
,
1985
).
15.
L. J.
Munro
and
D. J.
Wales
,
Phys. Rev. B
59
,
3969
(
1999
).
16.
W.
E
and
X.
Zhou
,
Nonlinearity
24
,
1831
(
2011
).
17.
See https://wiki.fysik.dtu.dk/ase/ for information about the ASE project.
18.
See http://theory.cm.utexas.edu/henkelman/code/ to obtain the TSASE code.
19.
G.
Henkelman
and
H.
Jónsson
,
J. Chem. Phys.
115
,
9657
(
2001
).
20.
S. T.
Chill
,
M.
Welborn
,
R.
Terrell
,
L.
Zhang
,
J.-C.
Berthet
,
A.
Pedersen
,
H.
Jónsson
, and
G.
Henkelman
, “
EON: Software for long time simulations of atomic scale systems
,” Model. Simul. Mater. Sci. Eng. (in press).
21.
O. M.
Becker
and
M.
Karplus
,
J. Chem. Phys.
106
,
1495
(
1997
).
22.
E.
Rabani
,
J. Chem. Phys.
116
,
258
(
2002
).
23.
W.
Kohn
,
A. D.
Becke
, and
R. G.
Parr
,
J. Phys. Chem.
100
,
12974
(
1996
).
24.
G.
Kresse
and
J.
Furthmüller
,
Comput. Mater. Sci.
6
,
15
(
1996
).
25.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
26.
J. P.
Perdew
, in
Electronic Structure of Solids
, edited by
P.
Ziesche
and
H.
Eschrig
(
Akademie Verlag
,
Berlin
,
1991
), pp.
11
20
.
27.
P. E.
Blöchl
,
Phys. Rev. B
50
,
17953
(
1994
).
28.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
30.
M.
Grünwald
,
K.
Lutker
,
A. P.
Alivisatos
,
E.
Rabani
, and
P. L.
Geissler
,
Nano Lett.
13
,
1367
(
2013
).
31.
P.
Xiao
and
G.
Henkelman
,
J. Chem. Phys.
137
,
101101
(
2012
).
32.
C. M. F.
Rae
and
R. C.
Reed
,
Acta Mater.
49
,
4113
(
2001
).
33.
C.
Berne
,
A.
Pasturel
,
M.
Sluiter
, and
B.
Vinet
,
Phys. Rev. Lett.
83
,
1621
(
1999
).
34.
B.
Seiser
,
T.
Hammerschmidt
,
A. N.
Kolmogorov
,
R.
Drautz
, and
D. G.
Pettifor
,
Phys. Rev. B
83
,
224116
(
2011
).
35.
X. W.
Zhou
,
H. N. G.
Wadley
,
R. A.
Johnson
,
D. J.
Larson
,
N.
Tabat
,
A.
Cerezo
,
A. K.
Petford-Long
,
G. D. W.
Smith
,
P. H.
Clifton
,
R. L.
Martens
 et al.,
Acta. Mater.
49
,
4005
(
2001
).
You do not currently have access to this content.