We tested the isotropic periodic sum (IPS) method for computing Madelung energies of ionic crystals. The performance of the method, both in its nonpolar (IPSn) and polar (IPSp) forms, was compared with that of the zero-charge and Wolf potentials [D. Wolf, P. Keblinski, S. R. Phillpot, and J. Eggebrecht, J. Chem. Phys.110, 8254 (1999)]. The results show that the IPSn and IPSp methods converge the Madelung energy to its reference value with an average deviation of ∼10−4 and ∼10−7 energy units, respectively, for a cutoff range of 18–24a (a/2 being the nearest-neighbor ion separation). However, minor oscillations were detected for the IPS methods when deviations of the computed Madelung energies were plotted on a logarithmic scale as a function of the cutoff distance. To remove such oscillations, we introduced a modified IPSn potential in which both the local-region and long-range electrostatic terms are damped, in analogy to the Wolf potential. With the damped-IPSn potential, a smoother convergence was achieved. In addition, we observed a better agreement between the damped-IPSn and IPSp methods, which suggests that damping the IPSn potential is in effect similar to adding a screening potential in IPSp.

1.
G. A.
Cisneros
,
M.
Karttunen
,
P.
Ren
, and
C.
Sagui
,
Chem. Rev.
114
,
779
(
2014
).
2.
E.
Madelung
,
Phys. Z.
XIX
,
524
(
1918
).
3.
P. P.
Ewald
,
Ann. Phys. (Leipzig)
369
,
253
(
1921
).
4.
W. A.
Harrison
,
Phys. Rev. B
73
,
212103
(
2006
).
5.
M.
Gaio
and
P. L.
Silvestrelli
,
Phys. Rev. B
79
,
012102
(
2009
).
6.
D.
Wolf
,
P.
Keblinski
,
S. R.
Phillpot
, and
J.
Eggebrecht
,
J. Chem. Phys.
110
,
8254
(
1999
).
7.
B. A.
Luty
,
I. G.
Tironi
, and
W. F.
van Gunsteren
,
J. Chem. Phys.
103
,
3014
(
1995
).
8.
Z.
Kurtović
,
M.
Marchi
, and
D.
Chandler
,
Mol. Phys.
78
,
1155
(
1993
).
9.
J. S.
Hub
,
B. L.
de Groot
,
H.
Grubmüller
, and
G.
Groenhof
,
J. Chem. Theory Comput.
10
,
381
(
2014
).
10.
T.
Darden
,
D.
York
, and
L.
Pedersen
,
J. Chem. Phys.
98
,
10089
(
1993
).
11.
J. S.
Bader
and
D.
Chandler
,
J. Phys. Chem.
96
,
6423
(
1992
).
12.
P. E.
Smith
and
B. M.
Pettitt
,
J. Chem. Phys.
95
,
8430
(
1991
).
13.
C. L.
Brooks
 III
,
B. M.
Pettitt
, and
M.
Karplus
,
J. Chem. Phys.
83
,
5897
(
1985
).
14.
D.
Zahn
,
B.
Schilling
, and
S. M.
Kast
,
J. Phys. Chem. B
106
,
10725
(
2002
).
15.
C. J.
Fennell
and
J. D.
Gezelter
,
J. Chem. Phys.
124
,
234104
(
2006
).
16.
Y.
Yonezawa
,
J. Chem. Phys.
136
,
244103
(
2012
).
17.
B. W.
McCann
and
O.
Acevedo
,
J. Chem. Theory Comput.
9
,
944
(
2013
).
18.
I.
Fukuda
,
Y.
Yonezawa
, and
H.
Nakamura
,
J. Phys. Soc. Japan
77
,
114301
(
2008
).
19.
X.
Wu
and
B. R.
Brooks
,
J. Chem. Phys.
122
,
044107
(
2005
).
20.
X.
Wu
and
B. R.
Brooks
,
J. Chem. Phys.
129
,
154115
(
2008
).
21.
X.
Wu
and
B. R.
Brooks
,
J. Chem. Phys.
131
,
024107
(
2009
).
22.
K. Z.
Takahashi
,
T.
Narumi
, and
K.
Yasuoka
,
J. Chem. Phys.
135
,
174108
(
2011
).
23.
K. Z.
Takahashi
,
T.
Narumi
,
D.
Suh
, and
K.
Yasuoka
,
J. Chem. Theory Comput.
8
,
4503
(
2012
).
24.
P.
Ojeda-May
and
J.
Pu
,
J. Chem. Theory Comput.
10
,
134
(
2014
).
25.
See supplementary material at http://dx.doi.org/10.1063/1.4871871 for choice of the control parameter.

Supplementary Material

You do not currently have access to this content.