We report computer simulations of an excess electron in various structural motifs of polyethylene at room temperature, including lamellar and interfacial regions between amorphous and lamellae, as well as nanometre-sized voids. Electronic properties such as density of states, mobility edges, and mobilities are computed on the different phases using a block Lanczos algorithm. Our results suggest that the electronic density of states for a heterogeneous material can be approximated by summing the single phase density of states weighted by their corresponding volume fractions. Additionally, a quantitative connection between the localized states of the excess electron and the local atomic structure is presented.

1.
M. A.
Henderson
,
J. M.
White
,
H.
Uetsuka
, and
H.
Onishi
,
J. Am. Chem. Soc.
125
,
14974
(
2003
).
2.
C. J.
Lombardo
,
M. S.
Glaz
,
Z.-E.
Ooi
,
D. A.
Vanden Bout
, and
A.
Dodabalapur
,
Phys. Chem. Chem. Phys.
14
,
13199
(
2012
).
3.
C.
Groves
,
J. C.
Blakesley
, and
N. C.
Greenham
,
Nano Lett.
10
,
1063
(
2010
).
4.
L. G.
Kaake
,
P. F.
Barbara
, and
X. Y.
Zhu
,
J. Phys. Chem. Lett.
1
,
628
(
2010
).
5.
G.
Mazzanti
,
G. C.
Montanari
and
J. M.
Alison
,
IEEE Trans. Dielectr. Insul.
10
,
187
(
2003
).
6.
P. F.
Barbara
,
T. J.
Meyer
, and
M. A.
Ratner
,
J. Phys. Chem.
100
,
13148
(
1996
).
7.
H. T.
Nicolai
,
M.
Kuik
,
G. A. H.
Wetzelaer
,
B.
de Boer
,
C.
Campbell
,
C.
Risko
,
J. L.
Brédas
, and
P. W. M.
Blom
,
Nature Mater.
11
,
882
(
2012
).
8.
The first polyethylene insulated cable was a mile of submarine cable between the Isle of Wight and the mainland of England installed by Dean's company in 1938, see
J. A.
Allen
,
Studies in Innovation in the Steel and Chemical Industries
(
Manchester University Press
,
Manchester
,
1967
).
9.
M.
Meunier
and
N.
Quirke
,
J. Chem. Phys.
113
,
369
(
2000
);
M.
Meunier
,
A.
Aslanides
, and
N.
Quirke
,
J. Chem. Phys.
115
,
2876
(
2001
);
G.
Teyssedre
,
C.
Laurent
,
A.
Aslanides
,
N.
Quirke
,
L. A.
Dissado
,
A.
Campus
, and
L.
Martinotto
,
IEEE Trans. Dielectr. Electr. Insul.
8
,
744
(
2001
).
10.
J. A.
Anta
,
G.
Marcelli
,
M.
Meunier
, and
N.
Quirke
,
J. Appl. Phys.
92
,
1002
(
2002
).
11.
D.
Cubero
,
N.
Quirke
, and
D. F.
Coker
,
J. Chem. Phys.
119
,
2669
(
2003
);
D.
Cubero
,
D. F.
Coker
, and
N.
Quirke
,
Chem. Phys. Lett.
370
,
21
(
2003
);
D.
Cubero
and
N.
Quirke
,
J. Chem. Phys.
120
,
7772
(
2004
).
[PubMed]
12.
G.
Dlubek
,
T.
Lupke
,
H. M.
Fretwell
,
M. A.
Alam
,
A.
Wutzler
, and
H. J.
Radusch
,
Acta Polym.
49
,
236
(
1998
).
13.
G.
Dlubek
,
K.
Saarinen
, and
H. M.
Fretwell
,
J. Polym. Sci. B
36
,
1513
(
1998
).
14.
H. A.
Illias
,
G.
Chen
, and
P. L.
Lewin
,
J. Phys. D
44
,
245202
(
2011
).
15.
See supplementary material at http://dx.doi.org/10.1063/1.4869831 for a detailed approach of the modeling of different morphologies of PE.
16.
L. A.
Dissado
and
J. C.
Fothergill
,
Electrical Degradation and Breakdown in Polymers
(
Peter Peregrinus
,
London
,
1992
).
17.
I. L.
Hosier
,
A. S.
Vaughan
, and
S. G.
Swingler
,
J. Polym. Sci. B
38
,
2309
(
2000
).
18.
D. C.
Bassett
,
Principles of Polymer Morphology
(
Cambridge University Press
,
New York
,
1981
).
19.
D. C.
Bassett
,
A.
Keller
, and
S.
Mitsuhasi
,
J. Polym. Sci. A
1
,
763
(
1963
).
20.
B.
Smit
,
S.
Karaborni
, and
J. I.
Siepmann
,
J. Chem. Phys.
102
,
2126
(
1995
).
21.
J.
Brandrup
and
E. H.
Immergut
,
Polymer Handbook
(
American Institute of Physics
,
New York
,
1989
).
22.
N.
Mullin
and
J. K.
Hobbs
,
Phys. Rev. Lett.
107
,
197801
(
2011
).
23.
See http://www.surface-tension.de/solid-surface-energy.htm for information about the surface tension data of linear PE.
24.
F.
Webster
,
P. J.
Rossky
, and
R. A.
Friesner
,
Comput. Phys. Commun.
63
,
494
(
1991
);
L.
Turi
and
P. J.
Rossky
,
Chem. Rev.
112
,
5641
(
2012
).
[PubMed]
25.
N.
Ueno
,
K.
Sugita
,
K.
Seki
, and
H.
Inokuchi
,
Phys. Rev. B
34
,
6386
(
1986
).
26.
S.
Serra
,
S.
Iarlori
,
E.
Tosatti
,
S.
Scandolo
,
M. C.
Righi
, and
G. E.
Santoro
,
Chem. Phys. Lett.
360
,
487
(
2002
).

Supplementary Material

You do not currently have access to this content.