We developed a general computational scheme for differential spectra on the basis of time correlation function and perturbation theory. The scheme provides a quite efficient route to evaluate small differential spectra by molecular dynamics simulation instead of the straightforward subtraction of two spectra. Applications of this scheme have demonstrated that the proposed route is accurate and far more efficient in several orders of magnitude. The present method enables us to analyze a variety of experimental differential spectra using molecular dynamics simulation.

1.
Advances in Infrared Raman Spectroscopy
, edited by
R. J. H.
Clark
and
R. E.
Hester
(
Wiley Heyden
, 1975–
1985
), Vols.
1–12
.
2.
Y. R.
Shen
, in
Proceedings of International School of Physics “Enrico Fermi”
(
North Holland
,
Amsterdam
,
1994
), Vol.
CXX
.
3.
G.
Zundel
, “
Easily polarizable hydrogen bonds—Their interactions with the environment—IR continuum and anomalous large proton conductivity
,” in
The Hydrogen Bond
, edited by
P.
Schuster
,
G.
Zundel
,
C.
Sandorfy
(
North-Holland
,
Amsterdam
,
1976
), Vol.
2
, pp.
683
766
.
4.
J.
Hobley
,
S.
Kajimoto
,
A.
Takamizawa
,
K.
Ohta
,
Q.
Tran-Chong
, and
H.
Fukumura
,
J. Phys. Chem. B
107
,
11411
(
2003
).
5.
A.
Yamakata
and
M.
Osawa
,
J. Am. Chem. Soc.
131
,
6892
(
2009
).
6.
A.
Yamakata
,
E.
Soeta
,
T.
Ishiyama
,
M.
Osawa
, and
A.
Morita
,
J. Am. Chem. Soc.
135
,
15033
(
2013
).
7.
Y.
Furutani
,
H.
Shimizu
,
Y.
Asai
,
T.
Fukuda
,
S.
Oiki
, and
H.
Kandori
,
J. Phys. Chem. Lett.
3
,
3806
(
2012
).
8.
J. G.
Davis
,
K. P.
Gierszal
,
P.
Wang
, and
D.
Ben-Amotz
,
Nature (London)
491
,
582
(
2012
).
9.
J. L.
Skinner
,
B. M.
Auer
, and
Y.-S.
Lin
,
Adv. Chem. Phys.
142
,
59
(
2009
).
10.
H.
Torii
,
J. Phys. Chem. B
111
,
5434
(
2007
).
11.
V.
Buch
,
T.
Tarbuck
,
G. L.
Richmond
,
H.
Groenzin
,
I.
Li
, and
M. J.
Shultz
,
J. Chem. Phys.
127
,
204710
(
2007
).
12.
D.
Laage
,
G.
Stirnemann
,
F.
Sterpone
,
R.
Rey
, and
J. T.
Hynes
,
Annu. Rev. Phys. Chem.
62
,
395
(
2011
).
13.
D. A.
McQuarrie
,
Statistical Mechanics
(
University Science Books
,
Sausalito
,
2000
).
14.
D. J.
Evans
and
G. P.
Morriss
,
Statistical Mechanics of Nonequilibrium Liquids
(
Academic Press
,
London
,
1990
).
15.
A.
Morita
and
J. T.
Hynes
,
J. Phys. Chem. B
106
,
673
(
2002
).
16.
A.
Morita
and
T.
Ishiyama
,
Phys. Chem. Chem. Phys.
10
,
5801
(
2008
).
17.
R.
Kubo
,
M.
Toda
, and
N.
Hashitsume
,
Statistical Physics II: Nonequilibrium Statistical Mechanics
, 2nd ed. (
Springer
,
Berlin
,
1999
).
18.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Clarendon Press
,
Oxford
,
1987
).
19.
J. O.
Hirschfelder
,
C. F.
Curtiss
, and
R. B.
Bird
,
Molecular Theory of Gases and Liquids
(
Wiley
,
New York
,
1954
).
20.
In case (i) or (ii), the conditions before and after the perturbation correspond to the Hamiltonian H0 and H, respectively. In case (iii) the two conditions to the temperature T0 and T.
21.
In the reversed calculation described in Sec. V C, this relation becomes vice versa. Therefore, both terms are in fact simultaneously calculated with the MD trajectories either before or after the perturbation, when both the forward and backward directions are considered.
You do not currently have access to this content.