We compare rotationally inelastic scattering of deuterated methyl radicals (CD3) and ammonia (ND3) in collisions with helium using close-coupling quantum-mechanical scattering calculations performed with ab initio potential energy surfaces (PESs). The theoretical methods have been rigorously tested against angle-resolved experimental measurements obtained using crossed molecular beam apparatuses in combination with velocity map imaging [O. Tkáč, A. G. Sage, S. J. Greaves, A. J. Orr-Ewing, P. J. Dagdigian, Q. Ma, and M. H. Alexander, Chem. Sci.4, 4199 (2013); O. Tkáč, A. K. Saha, J. Onvlee, C.-H. Yang, G. Sarma, C. K. Bishwakarma, S. Y. T. van de Meerakker, A. van der Avoird, D. H. Parker, and A. J. Orr-Ewing, Phys. Chem. Chem. Phys.16, 477 (2014)]. Common features of the scattering dynamics of these two symmetric top molecules, one closed-shell and the other an open-shell radical, are identified and discussed. Two types of anisotropies in the PES influence the interaction of an atom with a nonlinear polyatomic molecule. The effects of these anisotropies can be clearly seen in the state-to-state integral cross sections out of the lowest CD3 rotational levels of each nuclear spin symmetry at a collision energy of 440 cm−1. Similarities and differences in the differential cross sections for the ND3–He and CD3–He systems can be linked to the coupling terms derived from the PESs which govern particular initial to final rotational level transitions.

1.
O.
Tkáč
,
A. G.
Sage
,
S. J.
Greaves
,
A. J.
Orr-Ewing
,
P. J.
Dagdigian
,
Q.
Ma
, and
M. H.
Alexander
,
Chem. Sci.
4
,
4199
(
2013
).
2.
O.
Tkáč
,
A. K.
Saha
,
J.
Onvlee
,
C.-H.
Yang
,
G.
Sarma
,
C. K.
Bishwakarma
,
S. Y. T.
van de Meerakker
,
A.
van der Avoird
,
D. H.
Parker
, and
A. J.
Orr-Ewing
,
Phys. Chem. Chem. Phys.
16
,
477
(
2014
).
3.
F. J.
Aoiz
,
J. E.
Verdasco
,
M.
Brouard
,
J.
Kłos
,
S.
Marinakis
, and
S.
Stolte
,
J. Phys. Chem. A
113
,
14636
(
2009
).
4.
C. J.
Eyles
,
M.
Brouard
,
H.
Chadwick
,
F. J.
Aoiz
,
J.
Kłos
,
A.
Gijsbertsen
,
X.
Zhang
, and
S.
Stolte
,
Phys. Chem. Chem. Phys.
14
,
5420
(
2012
).
5.
C. J.
Eyles
,
M.
Brouard
,
H.
Chadwick
,
B.
Hornung
,
B.
Nichols
,
C. H.
Yang
,
J.
Kłos
,
F. J.
Aoiz
,
A.
Gijsbertsen
,
A. E.
Wiskerke
, and
S.
Stolte
,
Phys. Chem. Chem. Phys.
14
,
5403
(
2012
).
6.
C. J.
Eyles
,
M.
Brouard
,
C. H.
Yang
,
J.
Kłos
,
F. J.
Aoiz
,
A.
Gijsbertsen
,
A. E.
Wiskerke
, and
S.
Stolte
,
Nature Chem.
3
,
597
(
2011
).
7.
S.
Antonova
,
A.
Lin
,
A. P.
Tsakotellis
, and
G. C.
McBane
,
J. Chem. Phys.
110
,
11742
(
1999
).
8.
A.
Gijsbertsen
,
H.
Linnartz
,
G.
Rus
,
A. E.
Wiskerke
,
S.
Stolte
,
D. W.
Chandler
, and
J.
Klos
,
J. Chem. Phys.
123
,
224305
(
2005
).
9.
G.
Sarma
,
S.
Marinakis
,
J. J.
ter Meulen
,
D. H.
Parker
, and
K. G.
McKendrick
,
Nature Chem.
4
,
985
(
2012
).
10.
E. A.
Wade
,
K. T.
Lorenz
,
J. L.
Springfield
, and
D. W.
Chandler
,
J. Phys. Chem. A
107
,
4976
(
2003
).
11.
S.
Green
,
J. Phys. Chem.
73
,
2740
(
1980
).
12.
T. R.
Phillips
,
S.
Maluendes
, and
S.
Green
,
J. Chem. Phys.
102
,
6024
(
1995
).
13.
J.
Schleipen
,
J. J.
ter Meulen
,
G. C. M.
van der Sanden
,
P. E. S.
Wormer
, and
A.
van der Avoird
,
Chem. Phys.
163
,
161
(
1992
).
14.
J.
Schleipen
,
J. J.
ter Meulen
, and
A. R.
Offer
,
Chem. Phys.
171
,
347
(
1993
).
15.
W. B.
Chapman
,
A.
Schiffman
,
J. M.
Hutson
, and
D. J.
Nesbitt
,
J. Chem. Phys.
105
,
3497
(
1996
).
16.
W. B.
Chapman
,
A.
Kulcke
,
B. W.
Blackmon
, and
D. J.
Nesbitt
,
J. Chem. Phys.
110
,
8543
(
1999
).
17.
C. H.
Yang
,
G.
Sarma
,
J. J.
ter Meulen
,
D. H.
Parker
,
U.
Buck
, and
L.
Wiesenfeld
,
J. Phys. Chem. A
114
,
9886
(
2010
).
18.
C. H.
Yang
,
G.
Sarma
,
D. H.
Parker
,
J. J.
ter Meulen
, and
L.
Wiesenfeld
,
J. Chem. Phys.
134
,
204308
(
2011
).
19.
L.
Ma
,
M. H.
Alexander
, and
P. J.
Dagdigian
,
J. Chem. Phys.
134
,
154307
(
2011
).
20.
L.
Ma
,
P. J.
Dagdigian
, and
M. H.
Alexander
,
J. Chem. Phys.
136
,
224306
(
2012
).
21.
L.
Wiesenfeld
and
A.
Faure
,
Mon. Not. R. Astron. Soc.
432
,
2573
(
2013
).
22.
P. J.
Dagdigian
,
Int. Rev. Phys. Chem.
32
,
229
(
2013
).
23.
M. N. R.
Ashfold
,
S. R.
Langford
,
R. A.
Morgan
,
A. J.
Orr-Ewing
,
C. M.
Western
,
C. R.
Scheper
, and
C. A.
de Lange
,
Eur. Phys. J. D
4
,
189
(
1998
).
24.
L.
Fusina
and
S. N.
Murzin
,
J. Mol. Spectrosc.
167
,
464
(
1994
).
25.
C.
Leonard
,
S.
Carter
, and
N. C.
Handy
,
Chem. Phys. Lett.
370
,
360
(
2003
).
26.
G.
Herzberg
,
Molecular Spectra and Molecular Structure III. Electronic Spectra and Electronic Structure of Polyatomic Molecules
(
D. Van Nostrand
,
Princeton, NJ
,
1967
).
27.
P. J.
Dagdigian
and
M. H.
Alexander
,
J. Chem. Phys.
135
,
064306
(
2011
).
28.
K. B.
Gubbels
,
S. Y. T.
van de Meerakker
,
G. C.
Groenenboom
,
G.
Meijer
, and
A.
van der Avoird
,
J. Chem. Phys.
136
,
074301
(
2012
).
29.
Q.
Ma
,
P. J.
Dagdigian
, and
M. H.
Alexander
,
J. Chem. Phys.
138
,
104317
(
2013
).
30.
S.
Green
,
J. Phys. Chem.
64
,
3463
(
1976
).
31.
J.
Millan
,
N.
Halberstadt
,
G. C. M.
van der Sanden
, and
A.
van der Avoird
,
J. Phys. Chem.
103
,
4138
(
1995
).
32.
HIBRIDON is a package of programs for the time-independent quantum treatment of inelastic collisions and photodissociation written by M. H. Alexander, D. E. Manolopoulos, H.-J. Werner, B. Follmeg, P. J. Dagdigian, Q. Ma, and others. More information and/or a copy of the code can be obtained from the website http://www2.chem.umd.edu/groups/physical/hibridon/hib43.
33.
T. J.
Sears
,
J. M.
Frye
,
V.
Spirko
, and
W. P.
Kraemer
,
J. Chem. Phys.
90
,
2125
(
1989
).
34.
S.
Davis
,
D. T.
Anderson
,
G.
Duxbury
, and
D. J.
Nesbitt
,
J. Chem. Phys.
107
,
5661
(
1997
).
35.
M.
Snels
,
L.
Fusina
,
H.
Hollenstein
, and
M.
Quack
,
Mol. Phys.
98
,
837
(
2000
).
36.
J.
van Veldhoven
,
R. T.
Jongma
,
B.
Sartakov
,
W. A.
Bongers
, and
G.
Meijer
,
Phys. Rev. A
66
,
032501
(
2002
).
37.
S. L.
Davis
and
J. E.
Boggs
,
J. Phys. Chem.
69
,
2355
(
1978
).
38.
See supplementary material at http://dx.doi.org/10.1063/1.4869596 for computed DCSs of transitions out of the lowest rotational levels of each nuclear spin modification.

Supplementary Material

You do not currently have access to this content.