We develop a Fluctuating Immersed Boundary (FIB) method for performing Brownian dynamics simulations of confined particle suspensions. Unlike traditional methods which employ analytical Green's functions for Stokes flow in the confined geometry, the FIB method uses a fluctuating finite-volume Stokes solver to generate the action of the response functions “on the fly.” Importantly, we demonstrate that both the deterministic terms necessary to capture the hydrodynamic interactions among the suspended particles, as well as the stochastic terms necessary to generate the hydrodynamically correlated Brownian motion, can be generated by solving the steady Stokes equations numerically only once per time step. This is accomplished by including a stochastic contribution to the stress tensor in the fluid equations consistent with fluctuating hydrodynamics. We develop novel temporal integrators that account for the multiplicative nature of the noise in the equations of Brownian dynamics and the strong dependence of the mobility on the configuration for confined systems. Notably, we propose a random finite difference approach to approximating the stochastic drift proportional to the divergence of the configuration-dependent mobility matrix. Through comparisons with analytical and existing computational results, we numerically demonstrate the ability of the FIB method to accurately capture both the static (equilibrium) and dynamic properties of interacting particles in flow.

1.
H.
Noguchi
,
N.
Kikuchi
, and
G.
Gompper
, “
Particle-based mesoscale hydrodynamic techniques
,”
Europhys. Lett.
78
,
10005
(
2007
).
2.
A.
Donev
,
A. L.
Garcia
, and
B. J.
Alder
, “
Stochastic hard-sphere dynamics for hydrodynamics of non-ideal fluids
,”
Phys. Rev. Lett.
101
,
075902
(
2008
).
3.
A.
Donev
,
A. L.
Garcia
,
Anton
de la Fuente
, and
J. B.
Bell
, “
Diffusive transport by thermal velocity fluctuations
,”
Phys. Rev. Lett.
106
(
20
),
204501
(
2011
).
4.
L. D.
Landau
and
E. M.
Lifshitz
,
Fluid Mechanics
,
Course of Theoretical Physics
Vol.
6
(
Pergamon Press
,
Oxford, England
,
1959
).
5.
J. M. O.
De Zarate
and
J. V.
Sengers
,
Hydrodynamic Fluctuations in Fluids and Fluid Mixtures
(
Elsevier Science Ltd.
,
2006
).
6.
H. C.
Öttinger
,
Beyond Equilibrium Thermodynamics
(
Wiley Online Library
,
2005
).
7.
A.
Donev
,
A. L.
Garcia
,
Anton
de la Fuente
, and
J. B.
Bell
, “
Enhancement of diffusive transport by nonequilibrium thermal fluctuations
,”
J. Stat. Mech.: Theor. Exp.
06
(
2011
)
P06014
.
8.
B. Z.
Shang
,
N. K.
Voulgarakis
, and
J.-W.
Chu
, “
Fluctuating hydrodynamics for multiscale simulation of inhomogeneous fluids: Mapping all-atom molecular dynamics to capillary waves
,”
J. Chem. Phys.
135
,
044111
(
2011
).
9.
N. K.
Voulgarakis
and
J.-W.
Chu
, “
Bridging fluctuating hydrodynamics and molecular dynamics simulations of fluids
,”
J. Chem. Phys.
130
(
13
),
134111
(
2009
).
10.
B. Z.
Shang
,
N. K.
Voulgarakis
, and
J. W.
Chu
, “
Fluctuating hydrodynamics for multiscale modeling and simulation: Energy and heat transfer in molecular fluids
,”
J. Chem. Phys.
137
(
4
),
044117
(
2012
).
11.
A.
Donev
,
A. J.
Nonaka
,
Y.
Sun
,
T. G.
Fai
,
A. L.
Garcia
, and
J. B.
Bell
, “
Low Mach Number fluctuating hydrodynamics of diffusively mixing fluids
,” CAMCOS (in press); preprint arXiv:1212.2644 [math.NA] (
2014
).
12.
N.
Sharma
and
N. A.
Patankar
, “
Direct numerical simulation of the Brownian motion of particles by using fluctuating hydrodynamic equations
,”
J. Comput. Phys.
201
,
466
486
(
2004
).
13.
O. B.
Usta
,
A. J. C.
Ladd
, and
J. E.
Butler
, “
Lattice-Boltzmann simulations of the dynamics of polymer solutions in periodic and confined geometries
,”
J. Chem. Phys.
122
(
9
),
094902
(
2005
).
14.
A. J. C.
Ladd
,
R.
Kekre
, and
J. E.
Butler
, “
Comparison of the static and dynamic properties of a semiflexible polymer using lattice Boltzmann and Brownian-dynamics simulations
,”
Phys. Rev. E
80
(
3
),
036704
(
2009
).
15.
R.
Kekre
,
J. E.
Butler
, and
A. J. C.
Ladd
, “
Comparison of lattice-Boltzmann and Brownian-dynamics simulations of polymer migration in confined flows
,”
Phys. Rev. E
82
,
011802
(
2010
).
16.
B.
Dünweg
and
A. J. C.
Ladd
, “
Lattice Boltzmann simulations of soft matter systems
,”
Adv. Comput. Simul. Soft Matter Sci. III
221
,
89
166
(
2009
).
17.
P. J.
Atzberger
, “
Stochastic Eulerian-Lagrangian methods for fluid-structure interactions with thermal fluctuations
,”
J. Comput. Phys.
230
,
2821
2837
(
2011
).
18.
A. M.
Kopacz
,
N. A.
Patankar
, and
W. K.
Liu
, “
The immersed molecular finite element method
,”
Comput. Methods Appl. Mech. Eng.
233
,
28
39
(
2012
).
19.
F. Balboa
Usabiaga
,
R.
Delgado-Buscalioni
,
B. E.
Griffith
, and
A.
Donev
, “
Inertial coupling method for particles in an incompressible fluctuating fluid
,”
Comput. Methods Appl. Mech. Eng.
269
,
139
172
(
2014
). Code available at https://code.google.com/p/fluam.
20.
E. E.
Keaveny
, “
Fluctuating force-coupling method for simulations of colloidal suspensions
,” preprint arXiv:1306.1706 (
2013
).
21.
F. Balboa
Usabiaga
and
R.
Delgado-Buscalioni
, “
A minimal model for acoustic forces on Brownian particles
,”
Phys. Rev. E
88
,
063304
(
2013
).
22.
T.
Iwashita
,
Y.
Nakayama
, and
R.
Yamamoto
, “
A numerical model for Brownian particles fluctuating in incompressible fluids
,”
J. Phys. Soc. Jpn.
77
(
7
),
074007
(
2008
).
23.
Y.
Chen
,
N.
Sharma
, and
N.
Patankar
, “
Fluctuating immersed material (FIMAT) dynamics for the direct simulation of the Brownian motion of particles
,” in
IUTAM Symposium on Computational Approaches to Multiphase Flow
(
Springer
,
2006
), pp.
119
129
.
24.
M.
Fixman
, “
Simulation of polymer dynamics. I. General theory
,”
J. Chem. Phys.
69
,
1527
(
1978
).
25.
P. S.
Grassia
,
E. J.
Hinch
, and
L. C.
Nitsche
, “
Computer simulations of Brownian motion of complex systems
,”
J. Fluid Mech.
282
,
373
403
(
1995
).
26.
R. M.
Jendrejack
,
J. J.
de Pablo
, and
M. D.
Graham
, “
Stochastic simulations of DNA in flow: Dynamics and the effects of hydrodynamic interactions
,”
J. Chem. Phys.
116
(
17
),
7752
7759
(
2002
).
27.
R. M.
Jendrejack
,
D. C.
Schwartz
,
M. D.
Graham
, and
J. J.
de Pablo
, “
Effect of confinement on DNA dynamics in microfluidic devices
,”
J. Chem. Phys.
119
,
1165
(
2003
).
28.
J. P.
Hernandez-Ortiz
,
J. J.
de Pablo
, and
M. D.
Graham
, “
Fast computation of many-particle hydrodynamic and electrostatic interactions in a confined geometry
,”
Phys. Rev. Lett.
98
(
14
),
140602
(
2007
).
29.
Y.
Zhang
,
J. J.
de Pablo
, and
M. D.
Graham
, “
An immersed boundary method for Brownian dynamics simulation of polymers in complex geometries: Application to dna flowing through a nanoslit with embedded nanopits
,”
J. Chem. Phys.
136
,
014901
(
2012
).
30.
Shidong
Jiang
,
Zhi
Liang
, and
Jingfang
Huang
, “
A fast algorithm for Brownian dynamics simulation with hydrodynamic interactions
,”
Math. Comput.
82
(
283
),
1631
1645
(
2013
).
31.
A.
Sierou
and
J. F.
Brady
, “
Accelerated Stokesian dynamics simulations
,”
J. Fluid Mech.
448
,
115
146
(
2001
).
32.
J. W.
Swan
and
J. F.
Brady
, “
Simulation of hydrodynamically interacting particles near a no-slip boundary
,”
Phys. Fluids
19
(
11
),
113306
(
2007
).
33.
K.
Hinsen
, “
HYDROLIB: a library for the evaluation of hydrodynamic interactions in colloidal suspensions
,”
Comput. Phys. Commun.
88
(
2
),
327
340
(
1995
).
34.
B.
Cichocki
and
K.
Hinsen
, “
Stokes drag on conglomerates of spheres
,”
Phys. Fluids
7
,
285
(
1995
).
35.
A.
Ortega
,
D.
Amorós
, and
J.
García de La Torre
, “
Prediction of hydrodynamic and other solution properties of rigid proteins from atomic-and residue-level models
,”
Biophys. J.
101
(
4
),
892
898
(
2011
).
36.
J. G.
de la Torre
,
M. L.
Huertas
, and
B.
Carrasco
, “
Calculation of hydrodynamic properties of globular proteins from their atomic-level structure
,”
Biophys. J.
78
(
2
),
719
730
(
2000
).
37.
J. W.
Swan
and
J. F.
Brady
, “
Particle motion between parallel walls: Hydrodynamics and simulation
,”
Phys. Fluids
22
,
103301
(
2010
).
38.
J. W.
Swan
and
J. F.
Brady
, “
The hydrodynamics of confined dispersions
,”
J. Fluid Mech.
687
,
254
(
2011
).
39.
R.
Pesché
and
G.
Nägele
, “
Stokesian dynamics study of quasi-two-dimensional suspensions confined between two parallel walls
,”
Phys. Rev. E
62
(
4
),
5432
(
2000
).
40.
A. J.
Banchio
and
J. F.
Brady
, “
Accelerated Stokesian dynamics: Brownian motion
,”
J. Chem. Phys.
118
,
10323
(
2003
).
41.
E. H.
Hauge
and
A.
Martin-Lof
, “
Fluctuating hydrodynamics and Brownian motion
,”
J. Stat. Phys.
7
(
3
),
259
281
(
1973
).
42.
D.
Bedeaux
and
P.
Mazur
, “
Brownian motion and fluctuating hydrodynamics
,”
Physica
76
(
2
),
247
258
(
1974
).
43.
E. J.
Hinch
, “
Application of the Langevin equation to fluid suspensions
,”
J. Fluid Mech.
72
(
03
),
499
511
(
1975
).
44.
J. N.
Roux
, “
Brownian particles at different times scales: A new derivation of the Smoluchowski equation
,”
Phys. A
188
,
526
552
(
1992
).
45.
F. Balboa
Usabiaga
,
X.
Xie
,
R.
Delgado-Buscalioni
, and
A.
Donev
, “
The Stokes-Einstein relation at moderate Schmidt number
,”
J. Chem. Phys.
139
(
21
),
214113
(
2013
).
46.
T. T.
Pham
,
U. D.
Schiller
,
J. Ravi
Prakash
, and
B.
Dünweg
, “
Implicit and explicit solvent models for the simulation of a single polymer chain in solution: Lattice Boltzmann versus Brownian dynamics
,”
J. Chem. Phys.
131
,
164114
(
2009
).
47.
I.
Theurkauff
,
C.
Cottin-Bizonne
,
J.
Palacci
,
C.
Ybert
, and
L.
Bocquet
, “
Dynamic clustering in active colloidal suspensions with chemical signaling
,”
Phys. Rev. Lett.
108
,
268303
(
2012
).
48.
J.
Palacci
,
S.
Sacanna
,
A. P.
Steinberg
,
D. J.
Pine
, and
P. M.
Chaikin
, “
Living crystals of light-activated colloidal surfers
,”
Science
339
(
6122
),
936
940
(
2013
).
49.
B. E.
Griffith
, “
An accurate and efficient method for the incompressible Navier-Stokes equations using the projection method as a preconditioner
,”
J. Comput. Phys.
228
(
20
),
7565
7595
(
2009
).
50.
P. J.
Atzberger
,
P. R.
Kramer
, and
C. S.
Peskin
, “
A stochastic immersed boundary method for fluid-structure dynamics at microscopic length scales
,”
J. Comput. Phys.
224
,
1255
1292
(
2007
).
51.
S.
Lomholt
and
M. R.
Maxey
, “
Force-coupling method for particulate two-phase flow: Stokes flow
,”
J. Comput. Phys.
184
(
2
),
381
405
(
2003
).
52.
M. R.
Maxey
and
B. K.
Patel
, “
Localized force representations for particles sedimenting in Stokes flow
,”
Int. J. Multiphase Flow
27
(
9
),
1603
1626
(
2001
).
53.
D.
Liu
,
E. E.
Keaveny
,
M. R.
Maxey
, and
G. E.
Karniadakis
, “
Force-coupling method for flows with ellipsoidal particles
,”
J. Comput. Phys.
228
(
10
),
3559
3581
(
2009
).
54.
C. S.
Peskin
, “
The immersed boundary method
,”
Acta Numer.
11
,
479
517
(
2002
).
55.
P.
Plunkett
,
J.
Hu
,
C.
Siefert
, and
P. J.
Atzberger
, “
Spatially adaptive stochastic methods for fluid-structure interactions subject to thermal fluctuations in domains with complex geometries
,” preprint arXiv:1311.5882 (
2013
).
56.
M.
Hütter
and
H. C.
Öttinger
, “
Fluctuation-dissipation theorem, kinetic stochastic integral and efficient simulations
,”
J. Chem. Soc., Faraday Trans.
94
(
10
),
1403
1405
(
1998
).
57.
M.
Fixman
, “
Construction of Langevin forces in the simulation of hydrodynamic interaction
,”
Macromolecules
19
(
4
),
1204
1207
(
1986
).
58.
J.
Rotne
and
S.
Prager
, “
Variational treatment of hydrodynamic interaction in polymers
,”
J. Chem. Phys.
50
,
4831
(
1969
).
59.
A.
Donev
,
T. G.
Fai
, and
E.
Vanden-Eijnden
, “
A reversible mesoscopic model of diffusion in liquids: from giant fluctuations to Fick's law
,”
J. Stat. Mech. Theor. Exp.
(to be published); preprint arXiv:1312.1894 (
2014
).
60.
J. R.
Blake
, “
A note on the image system for a stokeslet in a no-slip boundary
,”
Proc. Cambridge Philos. Soc.
70
,
303
310
(
1971
).
61.
P. J.
Atzberger
, “
A note on the correspondence of an immersed boundary method incorporating thermal fluctuations with Stokesian-Brownian dynamics
,”
Phys. D
226
(
2
),
144
150
(
2007
).
62.
K.
Yeo
and
M. R.
Maxey
, “
Dynamics of concentrated suspensions of non-colloidal particles in Couette flow
,”
J. Fluid Mech.
649
(
1
),
205
231
(
2010
).
63.
R. W.
Nash
,
R.
Adhikari
, and
M. E.
Cates
, “
Singular forces and pointlike colloids in lattice Boltzmann hydrodynamics
,”
Phys. Rev. E
77
(
2
),
026709
(
2008
).
64.
F. Balboa
Usabiaga
,
I.
Pagonabarraga
, and
R.
Delgado-Buscalioni
, “
Inertial coupling for point particle fluctuating hydrodynamics
,”
J. Comput. Phys.
235
,
701
722
(
2013
).
65.
A.
Pal Singh Bhalla
,
B. E.
Griffith
,
N. A.
Patankar
, and
A.
Donev
, “
A minimally-resolved immersed boundary model for reaction-diffusion problems
,”
J. Chem. Phys.
139
(
21
),
214112
(
2013
).
66.
B. E.
Griffith
,
X.
Luo
,
D. M.
McQueen
, and
C. S.
Peskin
, “
Simulating the fluid dynamics of natural and prosthetic heart valves using the immersed boundary method
,”
Int. J. Appl. Mech.
01
(
01
),
137
177
(
2009
).
67.
G.
Tabak
and
P. J.
Atzberger
, “
Systematic stochastic reduction of inertial fluid-structure interactions subject to thermal fluctuations
,” preprint arXiv:1211.3798 (
2013
).
68.
S.
Delong
,
B. E.
Griffith
,
E.
Vanden-Eijnden
, and
A.
Donev
, “
Temporal integrators for fluctuating hydrodynamics
,”
Phys. Rev. E
87
(
3
),
033302
(
2013
).
69.
F. Balboa
Usabiaga
,
J. B.
Bell
,
R.
Delgado-Buscalioni
,
A.
Donev
,
T. G.
Fai
,
B. E.
Griffith
, and
C. S.
Peskin
, “
Staggered schemes for fluctuating hydrodynamics
,”
SIAM J. Multiscale Model. Simul.
10
(
4
),
1369
1408
(
2012
).
70.
C. W.
Gardiner
and
M. L.
Steyn-Ross
, “
Adiabatic elimination in stochastic systems. I-III
,”
Phys. Rev. A
29
,
2814
2844
(
1984
).
71.
G. A.
Pavliotis
and
A. M.
Stuart
,
Multiscale Methods: Averaging and Homogenization
(
Springer
,
2008
), Vol.
53
.
72.
H.
Hasimoto
, “
On the periodic fundamental solutions of the Stokes equations and their application to viscous flow past a cubic array of spheres
,”
J. Fluid Mech.
5
(
02
),
317
328
(
1959
).
73.
A. M.
Roma
,
C. S.
Peskin
, and
M. J.
Berger
, “
An adaptive version of the immersed boundary method
,”
J. Comput. Phys.
153
(
2
),
509
534
(
1999
).
74.
T.
Schaffter
, “
Numerical integration of sides: a short tutorial
,”
Swiss Federal Institute of Technology in Lausanne (EPFL), Switzerland
(
2010
), http://infoscience.epfl.ch/record/143450/files/sde_tutorial.pdf.
75.
A.
Abdulle
,
G.
Vilmart
, and
K.
Zygalakis
, “
Weak second order explicit stabilized methods for stiff stochastic differential equations
,”
SIAM J. Sci. Comput.
35
(
4
),
A1792
A1814
(
2013
).
76.
B. E.
Griffith
,
R. D.
Hornung
,
D. M.
McQueen
, and
C. S.
Peskin
, “
An adaptive, formally second order accurate version of the immersed boundary method
,”
J. Comput. Phys.
223
(
1
),
10
49
(
2007
).
77.
L.
Greengard
and
J.
Lee
, “
Accelerating the nonuniform fast fourier transform
,”
SIAM Rev.
46
(
3
),
443
454
(
2004
).
78.
E. R.
Dufresne
,
D.
Altman
, and
D. G.
Grier
, “
Brownian dynamics of a sphere between parallel walls
,”
EPL (Europhys. Lett.)
53
(
2
),
264
(
2001
).
79.
T.
Benesch
,
S.
Yiacoumi
, and
C.
Tsouris
, “
Brownian motion in confinement
,”
Phys. Rev. E
68
,
021401
(
2003
).
80.
C. W.
Oseen
,
Neuere Methoden und Ergebnisse in der Hydrodynamik
(
Akademische Verlagsgesellschaft
,
1927
).
81.
J. C.
Crocker
, “
Measurement of the hydrodynamic corrections to the Brownian motion of two colloidal spheres
,”
J. Chem. Phys.
106
,
2837
(
1997
).
82.
L.
Holzer
,
J.
Bammert
,
R.
Rzehak
, and
W.
Zimmermann
, “
Dynamics of a trapped Brownian particle in shear flows
,”
Phys. Rev. E
81
(
4
),
041124
(
2010
).
83.
J.
Bammert
,
L.
Holzer
, and
W.
Zimmermann
, “
Dynamics of two trapped Brownian particles: Shear-induced cross-correlations
,”
Eur. Phys. J. E
33
(
4
),
313
325
(
2010
).
84.
P. J.
Atzberger
, “
Incorporating shear into stochastic Eulerian-Lagrangian methods for rheological studies of complex fluids and soft materials
,”
Phys. D
265
,
57
70
(
2013
).
85.
C. W. J.
Beenakker
, “
Ewald sum of the Rotne-Prager tensor
,”
J. Chem. Phys.
85
,
1581
(
1986
).
86.
A.
Furukawa
and
H.
Tanaka
, “
Key role of hydrodynamic interactions in colloidal gelation
,”
Phys. Rev. Lett.
104
(
24
),
245702
(
2010
).
87.
N.
Bou-Rabee
,
A.
Donev
, and
E.
Vanden-Eijnden
, “
Metropolis integration schemes for self-adjoint diffusions
,” SIAM Multiscale Model. Simul. (in press); preprint arXiv:1309.5037 [math.NA] (
2013
).
88.
L.
Greengard
and
M. C.
Kropinski
, “
An integral equation approach to the incompressible navier–stokes equations in two dimensions
,”
SIAM J. Sci. Comput.
20
(
1
),
318
336
(
1998
).
89.
A.-K.
Tornberg
and
L.
Greengard
, “
A fast multipole method for the three-dimensional stokes equations
,”
J. Comput. Phys.
227
(
3
),
1613
1619
(
2008
).
90.
E. E.
Keaveny
and
M. J.
Shelley
, “
Applying a second-kind boundary integral equation for surface tractions in Stokes flow
,”
J. Comput. Phys.
230
(
5
),
2141
2159
(
2011
).
91.
D.
Devendran
and
C. S.
Peskin
, “
An immersed boundary energy-based method for incompressible viscoelasticity
,”
J. Comput. Phys.
231
(
14
),
4613
4642
(
2012
).
92.
G. N.
Milstein
and
M. V.
Tretyakov
,
Stochastic Numerics for Mathematical Physics
(
Springer
,
2004
).
93.
Y.
Zhang
,
A.
Donev
,
T.
Weisgraber
,
B. J.
Alder
,
M. D.
Graham
, and
J. J.
de Pablo
, “
Tethered DNA dynamics in shear flow
,”
J. Chem. Phys
130
(
23
),
234902
(
2009
).
94.
B. E.
Griffith
and
S.
Lim
, “
Simulating an elastic ring with bend and twist by an adaptive generalized immersed boundary method
,”
Commun. Comput. Phys.
12
,
433
461
(
2012
).
95.
S.
Lim
,
A.
Ferent
,
X. S.
Wang
, and
C. S.
Peskin
, “
Dynamics of a closed rod with twist and bend in fluid
,”
SIAM J. Sci. Comput.
31
(
1
),
273
302
(
2008
).
96.
Note that the mobility is symmetric so there is no notational ambiguity in
$\partial _{{\bm q}}\cdot \bm{\mathcal {M}}$
q·M
.
97.
Note that this is an approximation and in practice the mobility is not pairwise additive if higher-order multipoles such as stresslets are accounted for, see Appendix  B.
98.
Perhaps a more relevant diffusive length scale to use is the typical inter-particle gap, which can be substantially smaller than a for dense suspensions.
99.
In Green's function's based approaches there is no difficulty in dealing with unbounded three dimensional systems (at rest at infinity) since the Oseen tensor is the required response function and is easy to compute. Note however that when simulating periodic domains (e.g., colloidal suspensions) one requires the Green's functons for Stokes flow in a periodic domain, and these are not simple to compute,28,85 unlike in our approach, which handles boundary conditions naturally.
100.
Note, however, that Metropolization of even the simple midpoint scheme is a rather nontrivial task because the mobility matrix is never formed or factorized in FIB.
You do not currently have access to this content.