The promising field of mechanochemistry suffers from a general lack of understanding of the distribution and propagation of force in a stretched molecule, which limits its applicability up to the present day. In this article, we introduce the JEDI (Judgement of Energy DIstribution) analysis, which is the first quantum chemical method that provides a quantitative understanding of the distribution of mechanical stress energy among all degrees of freedom in a molecule. The method is carried out on the basis of static or dynamic calculations under the influence of an external force and makes use of a Hessian matrix in redundant internal coordinates (bond lengths, bond angles, and dihedral angles), so that all relevant degrees of freedom of a molecule are included and mechanochemical processes can be interpreted in a chemically intuitive way. The JEDI method is characterized by its modest computational effort, with the calculation of the Hessian being the rate-determining step, and delivers, except for the harmonic approximation, exact ab initio results. We apply the JEDI analysis to several example molecules in both static quantum chemical calculations and Born-Oppenheimer Molecular Dynamics simulations in which molecules are subject to an external force, thus studying not only the distribution and the propagation of strain in mechanically deformed systems, but also gaining valuable insights into the mechanochemically induced isomerization of trans-3,4-dimethylcyclobutene to trans,trans-2,4-hexadiene. The JEDI analysis can potentially be used in the discussion of sonochemical reactions, molecular motors, mechanophores, and photoswitches as well as in the development of molecular force probes.

1.
M. K.
Beyer
and
H.
Clausen-Schaumann
,
Chem. Rev.
105
,
2921
2948
(
2005
).
2.
E.
Evans
,
Annu. Rev. Biophys. Biomol. Struct.
30
,
105
128
(
2001
).
3.
J.
Ribas-Arino
,
M.
Shiga
, and
D.
Marx
,
Angew. Chem., Int. Ed.
48
,
4190
4193
(
2009
).
4.
Q.-Z.
Yang
,
Z.
Huang
,
T. J.
Kucharski
,
D.
Khvostichenko
,
J.
Chen
, and
R.
Boulatov
,
Nat. Nanotechnol.
4
,
302
306
(
2009
).
5.
D. H.
Waldeck
,
Chem. Rev.
91
,
415
436
(
1991
).
6.
H. M. D.
Bandara
and
S. C.
Burdette
,
Chem. Soc. Rev.
41
,
1809
1825
(
2012
).
7.
T.
Hugel
,
N. B.
Holland
,
A.
Cattani
,
L.
Moroder
,
M.
Seitz
, and
H. E.
Gaub
,
Science
296
,
1103
1106
(
2002
).
8.
S.
Grimm
,
G.
Bräuchle
, and
I.
Frank
,
Chem. Phys. Chem.
6
,
1943
1947
(
2005
).
9.
A. L.
Black
,
J. M.
Lenhardt
, and
S. L.
Craig
,
J. Mater. Chem.
21
,
1655
1663
(
2011
).
10.
T.
Ando
,
S.
Sumi
,
T.
Kawate
,
J.
Ichihara
, and
T.
Hanafusa
,
J. Chem. Soc. Chem. Commun.
1984
,
439
440
.
11.
G.
Cravotto
and
P.
Cintas
,
Angew. Chem., Int. Ed.
46
,
5476
5478
(
2007
).
12.
J. N.
Brantley
,
S. S. M.
Konda
,
D. E.
Makarov
, and
C. W.
Bielawski
,
J. Am. Chem. Soc.
134
,
9882
9885
(
2012
).
13.
R.
Paul
,
P.
Heil
,
J. P.
Spatz
, and
U. S.
Schwarz
,
Biophys. J.
94
,
1470
1482
(
2008
).
14.
D.
Stamenovic
and
M. F.
Coughlin
,
J. Biomech. Eng.
122
,
39
43
(
2000
).
15.
M. F.
Coughlin
and
D.
Stamenovic
,
Biophys. J.
84
,
1328
1336
(
2003
).
16.
J. C.
Hansen
,
R.
Skalak
,
S.
Chien
, and
A.
Hoger
,
Biophys. J.
70
,
146
166
(
1996
).
17.
D. E.
Discher
,
D. H.
Boal
, and
S. K.
Boey
,
Biophys. J.
75
,
1584
1597
(
1998
).
18.
H. W. G.
Lim
,
M.
Wortis
, and
R.
Mukhopadhyay
,
Proc. Natl. Acad. Sci. U.S.A.
99
,
16766
16769
(
2002
).
19.
J.
Li
,
M.
Dao
,
C. T.
Lim
, and
S.
Suresh
,
Biophys. J.
88
,
3707
3719
(
2005
).
20.
Z.
Wang
,
C.
Zhang
,
E.
Zhou
,
C.
Sun
,
J.
Hinkley
,
T.
Gates
, and
J.
Su
,
Comput. Mater. Sci.
36
,
292
302
(
2006
).
21.
W.
Stacklies
,
M. C.
Vega
,
M.
Wilmanns
, and
F.
Gräter
,
PLoS Comput. Biol.
5
,
e1000306
(
2009
).
22.
W.
Stacklies
,
C.
Seifert
, and
F.
Gräter
,
BMC Bioinf.
12
,
101
(
2011
).
23.
W.
Stacklies
,
F.
Xia
, and
F.
Gräter
,
PLoS Comput. Biol.
5
,
e1000574
(
2009
).
24.
S.
Xiao
,
W.
Stacklies
,
C.
Debes
, and
F.
Gräter
,
Soft Matter
7
,
1308
1311
(
2011
).
25.
H. S.
Smalø
and
E.
Uggerud
,
Mol. Phys.
111
,
1563
1573
(
2013
).
26.
P.
Pulay
and
G.
Fogarasi
,
J. Chem. Phys.
96
,
2856
2860
(
1992
).
27.
C.
Peng
,
P. Y.
Ayala
,
H. B.
Schlegel
, and
M. J.
Frisch
,
J. Comput. Chem.
17
,
49
56
(
1996
).
28.
V.
Bakken
and
T.
Helgaker
,
J. Chem. Phys.
117
,
9160
9174
(
2002
).
29.
E. B.
Wilson
,
J. C.
Decius
, and
P. C.
Cross
,
Molecular Vibrations - The Theory of Infrared and Raman Vibrational Spectroscopy
(
Dover
,
1980
).
30.
M. K.
Beyer
,
J. Chem. Phys.
112
,
7307
7312
(
2000
).
31.
Y.
Shao
,
L.
Fusti-Molnar
,
Y.
Jung
,
J.
Kussmann
,
C.
Ochsenfeld
,
S. T.
Brown
,
A. T. B.
Gilbert
,
L. V.
Slipchenko
,
S. V.
Levchenko
,
D. P.
O’Neill
,
R. A.
DiStasio
 Jr.
,
R. C.
Lochan
,
T.
Wang
,
G. J. O.
Beran
,
N. A.
Besley
,
J. M.
Herbert
,
C. Y.
Lin
,
T. V.
Voorhis
,
S. H.
Chien
,
A.
Sodt
,
R. P.
Steele
,
V. A.
Rassolov
,
P. E.
Maslen
,
P. P.
Korambath
,
R. D.
Adamson
,
B.
Austin
,
J.
Baker
,
E. F. C.
Byrd
,
H.
Daschel
,
R. J.
Doerksen
,
A.
Dreuw
,
B. D.
Dunietz
,
A. D.
Dutoi
,
T. R.
Furlani
,
S. R.
Gwaltney
,
A.
Heyden
,
S.
Hirata
,
C.-P.
Hsu
,
G.
Kedziora
,
R. Z.
Khaliullin
,
P.
Klunzinger
,
A. M.
Lee
,
M. S.
Lee
,
W. Z.
Liang
,
I.
Lotan
,
N.
Nair
,
B.
Peters
,
E. I.
Proynov
,
P. A.
Pieniazek
,
Y. M.
Rhee
,
J.
Ritchie
,
E.
Rosta
,
C. D.
Sherrill
,
A. C.
Simmonett
,
J. E.
Subotnik
,
H. L.
Woodcock
 III
,
W.
Zhang
,
A. T.
Bell
,
A. K.
Chakraborty
,
D. M.
Chipman
,
F. J.
Keil
,
A.
Warshel
,
W. J.
Hehre
,
H. F.
Schaefer
 III
,
J.
Kong
,
A. I.
Krylov
,
P. M.
Gill
, and
M.
Head-Gordon
,
Phys. Chem. Chem. Phys.
8
,
3172
3176
(
2006
).
32.
Scilab Enterprises
,
Scilab: Free and Open Source Software for Numerical Computation
(
Scilab Enterprises
,
Orsay, France
,
2012
).
33.
C.
Møller
and
M. S.
Plesset
,
Phys. Rev.
46
,
618
622
(
1934
).
34.
C.
Hättig
and
F.
Weigend
,
J. Chem. Phys.
113
,
5154
5161
(
2000
).
35.
F.
Weigend
and
M.
Häser
,
Theor. Chem. Acc.
97
,
331
340
(
1997
).
36.
F.
Weigend
,
Phys. Chem. Chem. Phys.
4
,
4285
4291
(
2002
).
37.
J. T. H.
Dunning
,
J. Chem. Phys.
90
,
1007
1023
(
1989
).
38.
F.
Weigend
,
A.
Köhn
, and
C.
Hättig
,
J. Chem. Phys.
116
,
3175
3183
(
2002
).
39.
U. F.
Röhrig
,
U.
Troppmann
, and
I.
Frank
,
Chem. Phys.
289
,
381
388
(
2003
).
40.
T.
Stauch
and
A.
Dreuw
,
Angew. Chem., Int. Ed.
53
,
2759
2761
(
2014
).
41.
See supplementary material at http://dx.doi.org/10.1063/1.4870334 for detailed JEDI analysis of hydrogen peroxide on the basis of EFEI calculations, mathematical derivation of the JEDI analysis based on normal modes, geometries in Cartesian coordinates, absolute energies (hartree) and harmonic stress energies on the appropriate levels of theory for COGEF and EFEI calculations of hydrogen peroxide, ethene, and trans-3,4-dimethylcyclobutene, starting geometries in Cartesian coordinates, and absolute energies for the BOMD simulations of hydrogen peroxide and benzene.

Supplementary Material

You do not currently have access to this content.