We study charge transfer in bridged di- and triruthenium complexes from a theoretical and computational point of view. Ab initio computations are interpreted from the perspective of a simple empirical Hamiltonian, a chemically specific Mott-Hubbard model of the complexes' π electron systems. This Hamiltonian is coupled to classical harmonic oscillators mimicking a polarizable dielectric environment. The model can be solved without further approximations in a valence bond picture using the method of exact diagonalization and permits the computation of charge transfer reaction rates in the framework of Marcus' theory. In comparison to the exact solution, the Hartree-Fock mean field theory overestimates both the activation barrier and the magnitude of charge-transfer excitations significantly. For triruthenium complexes, we are able to directly access the interruthenium antiferromagnetic coupling strengths.

1.
A.
Warshel
,
Acc. Chem. Res.
35
,
385
395
(
2002
).
2.
P.
Brzezinkski
,
A.
Ehrenberg
, and
C.
Tommos
,
Biochim. Biophys. Acta
1655
,
1
12
(
2004
).
3.
M.
Hervas
,
J. A.
Navarro
, and
M. A.
de la Rosa
,
Acc. Chem. Res.
36
,
798
805
(
2003
).
4.
R. A.
Marcus
,
J. Chem. Phys.
24
,
966
978
(
1956
);
R. A.
Marcus
,
J. Chem. Phys.
24
,
979
989
(
1956
).
5.
H.
Fröhlich
,
Adv. Phys.
3
,
325
361
(
1954
).
6.
N. F.
Mott
and
R. W.
Gurney
,
Electronic Processes in Ionic Crystals
(
Oxford University Press
,
New York
,
1940
).
7.
T.
Steinbrecher
,
T.
Koslowski
, and
D. A.
Case
,
J. Phys. Chem. B
112
,
16935
(
2008
).
8.
T.
Koslowski
and
T.
Steinbrecher
,
Z. Phys. Chem.
223
,
739
752
(
2009
).
9.
P. B.
Woiczikowski
,
T.
Steinbrecher
,
T.
Kubar
, and
M.
Elstner
,
J. Phys. Chem. B
115
,
9846
9863
(
2011
).
10.
L.
Noodleman
,
J. Chem. Phys.
74
,
5737
5743
(
1981
).
11.
L.
Noodleman
,
D. A.
Case
, and
A.
Aizman
,
J. Am. Chem. Soc.
110
,
1001
1005
(
1988
).
12.
E.
Schreiner
,
N. N.
Nair
,
R.
Pollet
,
V.
Staemmler
, and
D.
Marx
,
Proc. Natl. Acad. Sci. U.S.A.
104
,
20725
20730
(
2007
).
13.
S. A.
Fiethen
,
V.
Staemmler
,
N. N.
Nair
,
J.
Ribas-Arino
,
E.
Schreiner
, and
D.
Marx
,
J. Phys. Chem. B
114
,
11612
11619
(
2010
).
14.
N. N.
Nair
,
J.
Ribas-Arino
,
V.
Staemmler
, and
D.
Marx
,
J. Chem. Theory Comput.
6
,
569
575
(
2010
).
15.
Md. E.
Ali
,
N. N.
Nair
,
V.
Staemmler
, and
D.
Marx
,
J. Chem. Phys.
136
,
224101
(
2012
).
16.
T.
Hayashi
and
A. A.
Stuchebrukhov
,
Proc. Natl. Acad. Sci. U.S.A.
107
,
19157
19162
(
2010
).
17.
C.
Creutz
and
H.
Taube
,
J. Am. Chem. Soc.
91
,
3988
3989
(
1969
).
18.
C.
Creutz
and
H.
Taube
,
J. Am. Chem. Soc.
95
,
1086
1094
(
1973
).
19.
A.
Bencini
,
I.
Ciofini
,
C. A.
Daul
, and
A.
Ferretti
,
J. Am. Chem. Soc.
121
,
11418
11424
(
1999
).
20.
J.
Hardesty
,
S. K.
Goh
, and
D. S.
Marynick
,
J. Mol. Struct.
588
,
223
226
(
2002
).
21.
D.
Yokogawa
,
H.
Sato
,
Y.
Nakao
, and
S.
Sakaki
,
Inorg. Chem.
46
,
1966
1974
(
2007
).
22.
H.
Bolvin
,
Inorg. Chem.
46
,
417
426
(
2007
).
23.
T.
Todorova
and
B.
Delley
,
Inorg. Chem.
47
,
11269
11277
(
2008
).
24.
A.
Das
,
T.
Scherer
,
S.
Maji
,
T. K.
Mondal
,
S. M.
Mobin
,
F. A.
Urbanos
,
R.
Jimenez-Aparicio
,
W.
Kaim
, and
G. K.
Lahiri
,
Inorg. Chem.
50
,
7040
7049
(
2011
).
25.
M.
Kaupp
,
M.
Renz
,
M.
Parthey
,
M.
Stolte
,
F.
Würthner
, and
C.
Lambert
,
Phys. Chem. Chem. Phys.
13
,
16973
16986
(
2011
).
26.
J. R.
Reimers
,
Z.-L.
Cai
, and
N. S.
Hush
,
Chem. Phys.
319
,
39
51
(
2005
).
27.
C. F.
Chen
,
J. Phys. Condens. Matter
4
,
9855
9868
(
1992
).
28.
M.
Cuoco
,
C.
Noce
, and
A.
Romano
,
Phys. Rev. B
57
,
11989
11993
(
1998
).
29.
H.
Nakano
,
Y.
Motome
, and
M.
Imada
,
J. Phys. Soc. Jpn.
69
,
1282
1285
(
2000
).
30.
W. G.
Yin
,
H. Q.
Lin
, and
C. D.
Gong
,
Phys. Rev. Lett.
87
,
047204
(
2001
).
31.
R.
Eder
,
Phys. Rev. B
76
,
241103
(
2007
);
R.
Eder
,
Phys. Rev. B
78
,
115111
(
2008
);
R.
Eder
,
Phys. Rev. B
81
,
035101
(
2010
).
32.
S.
Horiuchi
,
T.
Shirakawa
, and
Y.
Ohta
,
Phys. Rev. B
77
,
155120
(
2008
).
33.
E.
Cremades
,
S.
Gomez-Coca
,
D.
Aravena
,
S.
Alvarez
, and
E.
Ruiz
,
J. Am. Chem. Soc.
134
,
10532
10542
(
2012
).
34.
Y.
Hatsugai
,
M.
Imada
, and
N.
Nagaosa
,
J. Phys. Soc. Jpn.
58
,
1347
1371
(
1989
).
35.
V. F.
Elesin
,
V. A.
Kashurnikov
,
L. A.
Openov
, and
A.
Podlivaev
,
JETP
99
,
237
249
(
1991
).
36.
T.
Tohyama
and
S.
Maekawa
,
Physica C
191
,
193
198
(
1992
).
37.
S. M.
Weber-Milbrodt
,
J. T.
Gammel
,
A. R.
Bishop
, and
E. Y.
Loh
,
Phys. Rev. B
45
,
6435
6458
(
1992
).
38.
J. M.
Deleon
,
I.
Batistic
,
A. R.
Bishop
,
S. D.
Conradson
, and
S. A.
Trugman
,
Phys. Rev. Lett.
68
,
3236
3239
(
1992
).
39.
W.
Koshibae
,
Y.
Ohta
, and
S.
Maekawa
,
Phys. Rev. B
47
,
3391
3400
(
1993
).
40.
S.
Ishihara
,
T.
Egami
, and
M.
Tachiki
,
Phys. Rev. B
55
,
3163
3172
(
1997
).
41.
M.
Takahashi
and
J.
Igarashi
,
Phys. Rev. B
59
,
7373
7381
(
1999
).
42.
S.
He
,
S.
Das Sarma
, and
X. C.
Xie
,
Phys. Rev. B
47
,
4394
4412
(
1993
).
43.
S.
He
,
S. H.
Simon
, and
B. I.
Halperin
,
Phys. Rev. B
50
,
1823
1831
(
1994
).
44.
A.
Wojs
and
P.
Hawrylak
,
Phys. Rev. B
56
,
13227
13234
(
1997
).
45.
J. J.
Quinn
and
A.
Wojs
,
J. Phys. Condens. Matter
12
,
R265
R298
(
2000
).
46.
X.
Wan
,
K.
Yang
, and
E. H.
Rezayi
,
Phys. Rev. Lett.
88
,
056802
(
2002
).
47.
R. H.
Morf
,
N.
d'Ambrumenil
, and
S.
Das Sarma
,
Phys. Rev. B
66
,
075408
(
2002
).
48.
Z.
Papic
,
M. O.
Goerbig
, and
N.
Regnault
,
Phys. Rev. Lett.
105
,
176802
(
2010
).
49.
T.
Neupert
,
L.
Santos
,
C.
Chamon
, and
C.
Mudry
,
Phys. Rev. Lett.
106
,
236804
(
2011
).
50.
H.
Wang
,
R.
Narayanan
,
X.
Wan
, and
F. C.
Zhang
,
Phys. Rev. B
86
,
035122
(
2012
).
51.
M.
Caffarel
and
W.
Krauth
,
Phys. Rev. Lett.
72
,
1545
1548
(
1994
).
52.
H. D.
Kim
,
H. J.
Noh
,
K. H.
Kim
 et al,
Phys. Rev. Lett.
93
,
126404
(
2004
).
53.
P.
Piecuch
,
J.
Cizek
, and
J.
Paldus
,
Int. J. Quantum Chem.
42
,
165
191
(
1992
).
54.
J.
Schütt
and
M. C.
Böhm
,
Mol. Phys.
85
,
1217
1226
(
1995
).
55.
W.
Barford
and
R. J.
Bursill
,
Chem. Phys. Lett.
268
,
535
540
(
1997
).
56.
S.
Mukhopadhyay
and
S.
Ramasesha
,
J. Chem. Phys.
131
,
074111
(
2009
).
57.
S.
Thomas
,
Y. A.
Pati
, and
S.
Ramasesha
,
Cryst. Growth Des.
11
,
1846
1854
(
2011
).
58.
S.
Sahoo
,
V. M. L.
Durga Prasad Goli
,
S.
Ramasesha
, and
D.
Sen
,
J. Phys. Condens. Matter
24
,
115601
(
2012
).
59.
M.
Capone
,
W.
Stephan
, and
M.
Grilli
,
Phys. Rev. B
56
,
4484
4493
(
1997
).
60.
W.
Stephan
,
M.
Capone
,
M.
Grilli
, and
C.
Castellani
,
Phys. Lett. A
227
,
120
126
(
1997
).
61.
C. A.
Perroni
,
E.
Piegari
,
M.
Capone
, and
V.
Cataudella
,
Phys. Rev. B
69
,
174301
(
2004
).
62.
I.
Baldea
,
H.
Köppel
, and
L. S.
Cederbaum
,
Phys. Rev. B
69
,
075307
(
2004
).
63.
J. T.
Devreese
and
A. S.
Alexandrov
,
Rep. Prog. Phys.
72
,
066501
(
2009
).
64.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
 et al, Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford, CT,
2009
.
65.
These charges originate from a Mullikan population analysis. We are aware of the problem of assigning charges to individual atoms and the large variety of schemes to resolve this question. We do, however, note that this problem is less apparent for small basis sets, pseudopotentials representing inner electrons and canonical orbitals separated by symmetry, all encountered here.
66.
D.
Gnandt
, “
Parametrisierung einer tight-binding-Rechnung für das Komplexion [(NH3)5Ru(pyz)Ru(NH3)5]5 +
,” undergraduate research thesis (
University of Freiburg
,
2008
).
67.
H.
Bolvin
,
J. Phys. Chem. A
107
,
5071
5078
(
2003
).
68.
H.
Dücker
,
M.
Struck
,
T.
Koslowski
, and
W.
von Niessen
,
Phys. Rev. B
46
,
13078
13081
(
1992
).
69.
S.
Yamada
,
T.
Imamura
, and
M.
Machida
,
Lect. Notes Comput. Sci.
4759
,
402
413
(
2008
).
70.
J. K.
Cullum
and
R.
Willoughby
,
Lanczos Algorithms for Large Symmetric Eigenvalue Problems I, II
(
Birkhäuser
,
Basel
,
1984
).
71.
Th.
Koslowski
and
W.
von Niessen
,
J. Comput. Chem.
14
,
769
774
(
1993
).
72.
T.
Siro
and
A.
Harju
,
Comput. Phys. Commun.
183
,
1884
1889
(
2012
).
73.
J.
Olsen
,
B. O.
Roos
,
P.
Jørgensen
, and
H. J. A.
Jensen
,
J. Chem. Phys.
89
,
2185
2192
(
1988
).
74.
G.
Rauhut
and
T.
Clark
,
J. Am. Chem. Soc.
115
,
9127
9135
(
1993
).
75.
C.
Lambert
, private communication (
2002
).
76.
D. M.
D'Allesandro
and
F. R.
Keene
,
Chem. Rev.
106
,
2270
2298
(
2006
).
77.
A.
von Kameke
,
D. M.
Tom
, and
H.
Taube
,
Inorg. Chem.
17
,
1790
1796
(
1978
).
78.
M. J.
Powers
,
R. W.
Callahan
,
D. J.
Salmon
, and
T. J.
Meyer
,
Inorg. Chem.
15
,
894
900
(
1976
).
79.
S.
Derossi
,
M.
Casanova
,
E.
Iengo
,
E.
Zangrando
,
M.
Stener
, and
E.
Alessio
,
Inorg. Chem.
46
,
11243
11253
(
2007
).
80.
V. C.
Lau
,
L. A.
Berben
, and
J. R.
Long
,
J. Am. Chem. Soc.
124
,
9042
9043
(
2002
).
81.
E. H.
Lieb
and
F. Y.
Wu
,
Phys. Rev. Lett.
20
,
1445
1448
(
1968
).
You do not currently have access to this content.