We present a critical comparison of the dielectric properties of three models of water—TIP4P/2005, TIP4P/2005f, and TTM3F. Dipole spatial correlation is measured using the distance dependent Kirkwood function along with one-dimensional and two-dimensional dipole correlation functions. We find that the introduction of flexibility alone does not significantly affect dipole correlation and only affects ɛ(ω) at high frequencies. By contrast the introduction of polarizability increases dipole correlation and yields a more accurate ɛ(ω). Additionally, the introduction of polarizability creates temperature dependence in the dipole moment even at fixed density, yielding a more accurate value for dɛ/dT compared to non-polarizable models. To better understand the physical origin of the dielectric properties of water we make analogies to the physics of polar nanoregions in relaxor ferroelectric materials. We show that ɛ(ω, T) and τD(T) for water have striking similarities with relaxor ferroelectrics, a class of materials characterized by large frequency dispersion in ɛ(ω, T), Vogel-Fulcher-Tammann behaviour in τD(T), and the existence of polar nanoregions.

1.
D.
Fernández
,
A. R. H.
Goodwin
,
E. W.
Lemmon
,
J. M. H. L.
Sengers
, and
R. C.
Williams
,
J. Phys. Chem. Ref. Data
26
,
1125
(
1997
).
2.
W. J.
Ellison
,
J. Phys. Chem. Ref. Data
36
,
1
(
2007
).
3.
W. J.
Ellison
,
K.
Lamkaouchi
, and
J. M.
Moreau
,
J. Mol. Liq.
68
,
171
(
1996
).
4.
I. G.
Tironi
,
R. M.
Brunne
, and
W. F.
van Gunsteren
,
Chem. Phys. Lett.
250
,
19
(
1996
).
5.
O.
Teleman
,
B.
Jönsson
, and
S.
Engström
,
Mol. Phys.
60
,
193
(
1987
).
6.
Y.
Wu
,
H. L.
Tepper
, and
G. A.
Voth
,
J. Chem. Phys.
124
,
024503
(
2006
).
7.
U.
Dinur
,
J. Phys. Chem.
94
,
5669
(
1990
).
8.
D. M.
Ferguson
,
J. Comput. Chem.
16
,
501
(
1995
).
9.
M.
Sprik
and
M. L.
Klein
,
J. Chem. Phys.
89
,
7556
(
1988
).
10.
S. B.
Zhu
,
S.
Yao
,
J. B.
Zhu
,
S.
Singh
, and
G. W.
Robinson
,
J. Phys. Chem.
95
,
6211
(
1991
).
11.
G.
Lamoureux
,
J. Alexander D.
MacKerell
, and
B.
Roux
,
J. Chem. Phys.
119
,
5185
(
2003
).
12.
H.
Yu
,
T.
Hansson
, and
W. F.
van Gunsteren
,
J. Chem. Phys.
118
,
221
(
2003
).
13.
R.
Kumar
,
F.-F.
Wang
,
G. R.
Jenness
, and
K. D.
Jordan
,
J. Chem. Phys.
132
,
014309
(
2010
).
14.
P.
Ren
and
J. W.
Ponder
,
J. Phys. Chem. B
107
,
5933
(
2003
).
15.
P. J.
van Maaren
and
D.
van der Spoel
,
J. Phys. Chem. B
105
,
2618
(
2001
).
16.
J.
Li
,
Z.
Zhou
, and
R. J.
Sadus
,
J. Chem. Phys.
127
,
154509
(
2007
).
17.
L.-P.
Wang
,
T.
Head-Gordon
,
J. W.
Ponder
,
P.
Ren
,
J. D.
Chodera
,
P. K.
Eastman
,
T. J.
Martinez
, and
V. S.
Pande
,
J. Phys. Chem. B
117
,
9956
(
2013
).
18.
P.
Tröster
,
K.
Lorenzen
,
M.
Schwörer
, and
P.
Tavan
,
J. Phys. Chem. B
117
,
9486
(
2013
).
19.
H. A.
Stern
,
F.
Rittner
,
B. J.
Berne
, and
R. A.
Friesner
,
J. Chem. Phys.
115
,
2237
(
2001
).
20.
M. W.
Mahoney
and
W. L.
Jorgensen
,
J. Chem. Phys.
115
,
10758
(
2001
).
21.
T.
Hasegawa
and
Y.
Tanimura
,
J. Phys. Chem. B
115
,
5545
(
2011
).
22.
H.
Yu
and
W. F.
van Gunsteren
,
J. Chem. Phys.
121
,
9549
(
2004
).
23.
H.
Xu
,
H. A.
Stern
, and
B. J.
Berne
,
J. Phys. Chem. B
106
,
2054
(
2002
).
24.
G. A.
Samara
,
J. Phys.: Condens. Matter
15
,
R367
(
2003
).
25.
W.
Kleemann
and
G. A.
Samara
,
Relaxor Ferroelectrics—From Random Field Models to Glassy Relaxation and Domain Dtates
(
Wiley-VCH
,
2005
).
26.
M.
Arakawa
,
H.
Kagi
, and
H.
Fukazawa
,
J. Mol. Struct.
972
,
111
(
2010
).
27.
Y.
Nakamura
and
T.
Ohno
,
Phys. Chem. Chem. Phys.
13
,
1064
(
2011
).
28.
C.
Luo
,
W.
Fa
,
J.
Zhou
,
J.
Dong
, and
X. C.
Zeng
,
Nano Lett.
8
,
2607
(
2008
).
29.
J.
Köfinger
,
G.
Hummer
, and
C.
Dellago
,
Proc. Natl. Acad. Sci. U.S.A.
105
,
13218
(
2008
).
30.
C.
Zhang
,
F.
Gygi
, and
G.
Galli
,
J. Phys. Chem. Lett.
4
,
2477
(
2013
).
31.
C.-Y.
Lee
,
J. A.
McCammon
, and
P. J.
Rossky
,
J. Chem. Phys.
80
,
4448
(
1984
).
32.
S.-B.
Zhu
and
G. W.
Robinson
,
J. Chem. Phys.
94
,
1403
(
1991
).
33.
J.
Kanth
,
M.
Pradeep
,
S.
Vemparala
, and
R.
Anishetty
,
Phys. Rev. E
81
,
021201
(
2010
).
34.
D. N.
LeBard
and
D. V.
Matyushov
,
J. Phys. Chem. B
114
,
9246
(
2010
).
35.
K.
Meister
,
S.
Ebbinghaus
,
Y.
Xu
,
J. G.
Duman
,
A.
DeVries
,
M.
Gruebele
,
D. M.
Leitner
, and
M.
Havenith
,
Proc. Natl. Acad. Sci. U.S.A.
110
,
1617
(
2013
).
36.
M.
Neumann
and
O.
Steinhauser
,
Chem. Phys. Lett.
106
,
563
(
1984
).
38.
J. G.
Kirkwood
,
J. Chem. Phys.
7
,
911
(
1939
).
39.
J.
Hansen
and
I.
McDonald
,
Theory of Simple Liquids
(
Elsevier Science
,
2006
).
40.
S. J.
Suresh
and
V. M.
Naik
,
J. Chem. Phys.
113
,
9727
(
2000
).
41.
M.
Sprik
,
J. Chem. Phys.
95
,
6762
(
1991
).
42.
N.
Yoshii
,
S.
Miura
, and
S.
Okazaki
,
Chem. Phys. Lett.
345
,
195
(
2001
).
43.
U.
Kaatze
,
J. Solution Chem.
26
,
1049
(
1997
).
44.
B. P.
Burton
,
E.
Cockayne
,
S.
Tinte
, and
U. V.
Waghmare
,
Phase Transitions
79
,
91
(
2006
).
45.
J.
Higo
,
M.
Sasai
,
H.
Shirai
,
H.
Nakamura
, and
T.
Kugimiya
,
Proc. Natl. Acad. Sci. U.S.A.
98
,
5961
(
2001
).
46.
A. N.
Dickey
and
M. J.
Stevens
,
Phys. Rev. E
86
,
051601
(
2012
).
47.
J.
Higo
,
H.
Kono
,
N.
Nakajima
,
H.
Shirai
,
H.
Nakamura
, and
A.
Sarai
,
Chem. Phys. Lett.
306
,
395
(
1999
).
48.
J.
Higo
,
H.
Kono
,
H.
Nakamura
, and
A.
Sarai
,
Proteins: Struct., Funct., Bioinf.
40
,
193
(
2000
).
49.
N.
Takano
,
K.
Umezawa
,
J.
Ikebe
,
Y.
Sonobe
,
R.
Yagisawa
,
J. I.
Ito
,
N.
Hamasaki
,
D.
Mitomo
,
H.
Miyagawa
,
A.
Yamagishi
, and
J.
Higo
,
Chem-Bio Inf. J.
8
,
14
(
2008
).
50.
D. P.
Shelton
,
Phys. Rev. B
72
,
020201
(
2005
).
51.
D. P.
Shelton
,
J. Chem. Phys.
123
,
084502
(
2005
).
52.
D. P.
Shelton
,
J. Chem. Phys.
136
,
044503
(
2012
).
53.
D. P.
Shelton
,
J. Chem. Phys.
117
,
9374
(
2002
).
54.
H.
Jansson
,
R.
Bergman
, and
J.
Swenson
,
Phys. Rev. Lett.
104
,
017802
(
2010
).
55.
H.
Jansson
,
R.
Bergman
, and
J.
Swenson
,
J. Mol. Struct.
972
,
92
(
2010
).
56.
C. J.
Fennell
,
L.
Li
, and
K. A.
Dill
,
J. Phys. Chem. B
116
,
6936
(
2012
).
57.
P.
Höchtl
,
S.
Boresch
,
W.
Bitomsky
, and
O.
Steinhauser
,
J. Chem. Phys.
109
,
4927
(
1998
).
58.
G.
Raabe
and
R. J.
Sadus
,
J. Chem. Phys.
134
,
234501
(
2011
).
59.
C.
Vega
and
J. L. F.
Abascal
,
Phys. Chem. Chem. Phys.
13
,
19663
(
2011
).
60.
M.
Neumann
,
J. Chem. Phys.
85
,
1567
(
1986
).
61.
H. W.
Horn
,
W. C.
Swope
,
J. W.
Pitera
,
J. D.
Madura
,
T. J.
Dick
,
G. L.
Hura
, and
T.
Head-Gordon
,
J. Chem. Phys.
120
,
9665
(
2004
).
62.
M. A.
Gonzalez
and
J. L. F.
Abascal
,
J. Chem. Phys.
135
,
224516
(
2011
).
63.
M. W.
Mahoney
and
W. L.
Jorgensen
,
J. Chem. Phys.
112
,
8910
(
2000
).
64.
S. W.
Rick
,
J. Chem. Phys.
120
,
6085
(
2004
).
65.
G.-Z.
Jia
,
K.-M.
Huang
,
L.-J.
Yang
, and
X.-Q.
Yang
,
Int. J. Mol. Sci.
10
,
1590
(
2009
).
66.
Y. S.
Badyal
,
M.-L.
Saboungi
,
D. L.
Price
,
S. D.
Shastri
,
D. R.
Haeffner
, and
A. K.
Soper
,
J. Chem. Phys.
112
,
9206
(
2000
).
67.
A. V.
Gubskaya
and
P. G.
Kusalik
,
J. Chem. Phys.
117
,
5290
(
2002
).
68.
J.
Verhoeven
and
A.
Dymanus
,
J. Chem. Phys.
52
,
3222
(
1970
).
69.
J.
Alejandre
,
G. A.
Chapela
,
H.
Saint-Martin
, and
N.
Mendoza
,
Phys. Chem. Chem. Phys.
13
,
19728
(
2011
).
70.
J. L. F.
Abascal
and
C.
Vega
,
J. Chem. Phys.
123
,
234505
(
2005
).
71.
B.
Hess
,
C.
Kutzner
,
D.
van der Spoel
, and
E.
Lindahl
,
J. Chem. Theory Comput.
4
,
435
(
2008
).
72.
G. S.
Fanourgakis
and
S. S.
Xantheas
,
J. Chem. Phys.
128
,
074506
(
2008
).
73.
D.
van der Spoel
,
E.
Lindahl
,
B.
Hess
,
A. R.
van Buuren
,
E.
Apol
,
P. J.
Meulenhoff
,
D. P.
Tieleman
,
A. L. T. M.
Sijbers
,
K. A.
Feenstra
,
R.
van Drunen
, and
H. J. C.
Berendsen
, Gromacs User Manual version 4.6 (
2013
).
74.
M.
Allen
and
D.
Tildesley
,
Computer Simulation of Liquids
(
Oxford University Press
,
1989
).
75.
D.
van der Spoel
,
P. J.
van Maaren
, and
H. J. C.
Berendsen
,
J. Chem. Phys.
108
,
10220
(
1998
).
76.
R. D.
Mountain
,
J. Chem. Phys.
107
,
3921
(
1997
).
77.
O.
Gereben
and
L.
Pusztai
,
Chem. Phys. Lett.
507
,
80
(
2011
).
78.
T.
Morrow
and
E.
Smith
,
J. Stat. Phys.
61
,
187
(
1990
).
79.
See supplementary material at http://dx.doi.org/10.1063/1.4869110 for information on box size dependence, VFT fitting, artifacts in GK and additional 2D correlation functions.
80.
M.
Uematsu
and
E. U.
Frank
,
J. Phys. Chem. Ref. Data
9
,
1291
(
1980
).
81.
W.
Parry
and
ASME
,
ASME International Steam Tables for Industrial Use: Based on the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam (IAPWS-IF97)
(
ASME
,
2006
).
82.
D.
Bertolini
,
M.
Cassettari
, and
G.
Salvetti
,
J. Chem. Phys.
76
,
3285
(
1982
).
83.
H.
Fröhlich
,
Theory of Dielectrics
(
Oxford University Press
,
London
,
1949
).
84.
J.
Israelachvili
,
Intermolecular and Surface Forces: Revised Third Edition
(
Elsevier Science
,
2011
).
85.
Based on the number of hits returned when searching top biophysics journals on Google Scholar.
86.
T.
Meissner
and
F. J.
Wentz
,
IEEE Trans. Geosci. Remote Sens.
42
,
1836
(
2004
).
87.
G.
Hale
and
M.
Querry
,
Appl. Opt.
12
,
555
(
1973
).
88.
T.
Fukasawa
,
T.
Sato
,
J.
Watanabe
,
Y.
Hama
,
W.
Kunz
, and
R.
Buchner
,
Phys. Rev. Lett.
95
,
197802
(
2005
).
89.
O. F.
Nielsen
,
Annu. Rep. Prog. Chem., Sect. C: Phys. Chem.
90
,
3
(
1993
).
90.
P. A.
Madden
and
R. W.
Impey
,
Chem. Phys. Lett.
123
,
502
(
1986
).
91.
J. B.
Hasted
,
S. K.
Husain
,
F. A. M.
Frescura
, and
J. R.
Birch
,
Chem. Phys. Lett.
118
,
622
(
1985
).
92.
M.
Chaplin
, “
Water and microwaves
” (2012), available online at http://www1.lsbu.ac.uk/water/microwave.html (last accessed 19 March 2014).
93.
R.
Pirc
and
R.
Blinc
,
Phys. Rev. B
76
,
020101
(
2007
).
94.
A. A.
Bokov
,
M. A.
Leshchenko
,
M. A.
Malitskaya
, and
I. P.
Raevski
,
J. Phys.: Condens. Matter
11
,
4899
(
1999
).
95.
G.
Adam
and
J. H.
Gibbs
,
J. Chem. Phys.
43
,
139
(
1965
).
96.
V.
Arkhipov
,
J. Non-Cryst. Solids
305
,
127
(
2002
).
97.
G.
Mathias
and
P.
Tavan
,
J. Chem. Phys.
120
,
4393
(
2004
).
98.
G.
Mathias
,
B.
Egwolf
,
M.
Nonella
, and
P.
Tavan
,
J. Chem. Phys.
118
,
10847
(
2003
).
99.
D.
van der Spoel
and
P. J.
van Maaren
,
J Chem. Theory Comput.
2
,
1
(
2006
).

Supplementary Material

You do not currently have access to this content.