Molecular beam scattering experiments have been performed to study the effect of long-range anisotropic forces on the collision dynamics of two small polar molecules. The main focus of this paper is on water, but also ammonia and hydrogen sulphide molecules have been investigated, and some results will be anticipated. The intermolecular distances mainly probed are of the order of 1 nm and therefore much larger than the molecular dimensions. In particular, we have found that the natural electric field gradient, generated by different spatial orientations of the permanent electric dipoles, is able to promote the transformation of free rotations into coupled pendular states, letting the molecular partners involved in the collision complex swinging to and fro around the field direction. This long-ranged concerted motion manifested itself as large increases of the magnitude of the total integral cross section. The experimental findings and the theoretical treatment developed to shed light on the details of the process suggest that the transformation from free rotations to pendular states depends on the rotational level of both molecules, on the impact parameter, on the relative collision velocity, on the dipole moment product and occurs in the time scale of picoseconds. The consequences of this intriguing phenomenon may be important for the interpretation and, in perspective, for the control of elementary chemical and biological processes, given by polar molecules, ions, and free radicals, occurring in several environments under various conditions.

1.
G.
Quéméner
and
P. S.
Julienne
,
Chem. Rev.
112
,
4949
(
2012
).
2.
B.
Carré
,
L.
Poisson
,
N.
Shafizadeh
, and
B.
Soep
,
J. Phys. Chem. A
117
,
8093
(
2014
).
3.
D. J.
Mann
and
M. D.
Halls
,
Phys. Rev. Lett.
90
,
195503
(
2003
).
4.
G.
Stirnemann
and
D.
Laage
,
J. Chem. Phys.
137
,
031101
(
2012
).
5.
V.
Aquilanti
,
K. C.
Mundim
,
M.
Elango
,
S.
Kleijn
, and
T.
Kasai
,
Chem. Phys. Lett.
498
,
209
(
2010
).
6.
K. H.
Kramer
and
R. B.
Bernstein
,
J. Chem. Phys.
42
,
767
(
1965
).
7.
S.
Stolte
,
Ber. Bunsen-Ges. Phys. Chem.
86
,
413
(
1982
).
8.
M.
Okada
,
S.
Goto
, and
T.
Kasai
,
Phys. Rev. Lett.
95
,
176103
(
2005
);
[PubMed]
D.-C.
Che
,
T.
Matsuo
,
Y.
Yano
,
L.
Bonnet
, and
T.
Kasai
,
Phys. Chem. Chem. Phys.
10
,
1419
(
2008
);
[PubMed]
P.-Y.
Tsai
,
D.-C.
Che
,
H.
Nakamura
,
K.-C.
Lin
, and
T.
Kasai
,
Phys. Chem. Chem. Phys.
12
,
2532
(
2010
).
[PubMed]
9.
B.
Friedrich
and
D. R.
Herschbach
,
Nature (London)
353
,
412
(
1991
).
10.
B.
Friedrich
and
D. R.
Herschbach
,
Phys. Rev. Lett.
74
,
4623
(
1995
).
11.
H.
Stapelfeldt
and
T.
Seideman
,
Rev. Mod. Phys.
75
,
543
(
2003
).
12.
R. J.
Cross
 Jr.
,
E. A.
Gislason
, and
D. R.
Herschbach
,
J. Chem. Phys.
45
,
3582
(
1966
).
13.
F.
Pirani
,
S.
Brizi
,
L. F.
Roncaratti
,
P.
Casavecchia
,
D.
Cappelletti
, and
F.
Vecchiocattivi
,
Phys. Chem. Chem. Phys.
10
,
5489
(
2008
).
14.
L. F.
Roncaratti
,
L.
Belpassi
,
D.
Cappelletti
,
F.
Pirani
, and
F.
Tarantelli
,
J. Phys. Chem. A
113
,
15223
(
2009
).
15.
D.
Cappelletti
,
E.
Ronca
,
L.
Belpassi
,
F.
Tarantelli
, and
F.
Pirani
,
Acc. Chem. Res.
45
,
1571
(
2012
).
16.
F.
Pirani
and
F.
Vecchicattivi
,
J. Chem. Phys.
66
,
372
(
1977
).
17.
L.
Belpassi
,
M.
Reca
,
F.
Tarantelli
,
L. F.
Roncaratti
,
F.
Pirani
,
D.
Cappelletti
,
A.
Faure
, and
Y.
Scribano
, J. Am. Chem. Soc.
132
,
13046
(
2010
).
18.
K.
Imura
,
T.
Kasai
,
H.
Ohoyma
, and
R.
Naaman
,
J. Chem. Phys.
110
,
355
(
1999
).
19.
R.
Cambi
,
D.
Cappelletti
,
G.
Liuti
, and
F.
Pirani
,
J. Chem. Phys.
95
,
1852
(
1991
);
D.
Cappelletti
,
G.
Liuti
and
F.
Pirani
,
Chem. Phys. Lett.
183
,
297
(
1991
);
F.
Pirani
,
G. S.
Maciel
,
D.
Cappelletti
, and
V.
Aquilanti
,
Int. Rev. Phys. Chem.
25
,
165
(
2006
).
20.
V.
Aquilanti
,
E.
Cornicchi
,
M.
Moix Teixidor
,
N.
Saendig
,
F.
Pirani
, and
D.
Cappelletti
,
Angew. Chem. Int. Ed.
44
,
2356
(
2005
).
21.
See supplementary material at http://dx.doi.org/10.1063/1.4869595 for information on the scattering experiments of ammonia and hydrogen sulphide and for the details of the interaction potential parameters.
22.
G.
Maitland
,
M.
Rigby
,
E.
Smith
, and
W.
Wakeham
,
Intermolecular Forces. Their Origin and Determination
(
Clarendon Press
,
Oxford
,
1987
).
23.
A. W.
Gisler
and
D. J.
Nesbitt
,
Faraday Discuss.
157
,
297
(
2012
).
24.
D.
Laage
and
J. T.
Hynes
,
Science
311
,
832
(
2006
).
25.
E. E.
Fenn
,
D. B.
Wong
, and
M. D.
Fayer
,
Proc. Natl. Acad. Sci. U.S.A.
106
,
15243
(
2009
);
[PubMed]
B.
Xu
and
X.
Chen
,
Phys. Rev. Lett.
110
,
156103
(
2013
).
[PubMed]
26.
D.
Skouteris
,
D. E.
Manolopoulos
,
W.
Bian
,
H.-J.
Werner
,
J.-H.
Lai
, and
K.
Liu
,
Science
286
,
1713
(
1999
);
[PubMed]
J.
Li
,
B.
Jiang
, and
H.
Guo
,
Chem. Sci.
4
,
629
(
2013
).
27.
D.
Ortiz-Young
,
H.-C.
Chiu
,
S.
Kim
,
K.
Voitchovsky
, and
E.
Riedo
,
Nat. Commun.
4
,
2482
(
2013
).
28.
R.
Otto
,
J.
Brox
,
S.
Trippel
,
M.
Stei
,
T.
Best
, and
R.
Wester
,
Nat. Chem.
4
,
534
(
2012
);
[PubMed]
J.
Aysina
,
A.
Maranzana
,
G.
Tonachini
,
P.
Tosi
, and
D.
Ascenzi
,
J. Chem. Phys.
138
,
204310
(
2013
);
[PubMed]
A.
Li
,
Y.
Li
,
H.
Guo
,
K.-C.
Lau
,
Y.
Xu
,
B.
Xiong
,
Y.-C.
Chang
, and
C. Y.
Ng
,
J. Chem. Phys.
140
,
011102
(
2014
).
[PubMed]

Supplementary Material

You do not currently have access to this content.