Very accurate calculations of the ground-state potential energy curve (PEC) of the LiH+ ion performed with all-electron explicitly correlated Gaussian functions with shifted centers are presented. The variational method is employed. The calculations involve optimization of nonlinear exponential parameters of the Gaussians performed with the aid of the analytical first derivatives of the energy determined with respect to the parameters. The diagonal adiabatic correction is also calculated for each PEC point. The PEC is then used to calculate the vibrational energies of the system. In that calculation, the non-adiabatic effects are accounted for by using an effective vibrational mass obtained by the minimization of the difference between the vibrational energies obtained from the calculations where the Born-Oppenheimer approximation was not assumed and the results of the present calculations.

1.
R.
Maoli
,
F.
Melchiorri
, and
D.
Tosti
,
ApJ
425
,
372
(
1994
).
2.
P. C.
Stancil
and
A.
Dalgarno
,
ApJ
479
,
543
(
1997
).
3.
D.
Galli
and
F.
Palla
,
Astron. Astrophys.
335
,
403
(
1998
).
4.
E.
Bodo
,
F. A.
Gianturco
, and
R.
Martinazzo
,
J. Phys. Chem. A
105
,
10986
(
2001
).
5.
E.
Bodo
,
F. A.
Gianturco
, and
R.
Martinazzo
,
J. Phys. Chem. A
105
,
10994
(
2001
).
6.
R.
Martinazzo
,
G. F.
Tantardini
,
E.
Bodo
, and
F. A.
Gianturco
,
J. Chem. Phys.
119
,
11241
(
2003
).
7.
F. X.
Gadéa
and
T.
Leininger
,
Theor. Chem. Acc.
116
,
566
(
2006
).
8.
W.-C.
Tung
,
M.
Pavanello
, and
L.
Adamowicz
,
J. Chem. Phys.
133
,
124106
(
2010
).
9.
W.-C.
Tung
,
M.
Pavanello
, and
L.
Adamowicz
,
J. Chem. Phys.
134
,
064117
(
2011
).
10.
See supplementary material at http://dx.doi.org/10.1063/1.4869517 for the complete LiH+ BO PEC and the adiabatic corrections obtained with 1200 ECGs in the present calculations.
11.
W.-C.
Tung
,
M.
Pavanello
, and
L.
Adamowicz
,
J. Chem. Phys.
136
,
104309
(
2012
).
12.
W.-C.
Tung
,
M.
Pavanello
, and
L.
Adamowicz
,
J. Chem. Phys.
137
,
164305
(
2012
).
13.
R. J. L.
Roy
,
A Computer Program for Solving the Radial Schrödinger Equation for Bound and Quasibound Levels
(
University of Waterloo
,
Waterloo, Ontario, Canada
,
2007
).
14.
E. A.
Hylleraas
,
Z. Phys.
54
,
347
(
1929
).
15.
S. F.
Boys
,
Proc. R. Soc. A
258
,
402
(
1960
).
16.
K.
Singer
,
Proc. R. Soc. A
258
,
412
(
1960
).
17.
S.
Bubin
and
L.
Adamowicz
,
J. Chem. Phys.
121
,
6249
(
2004
).
18.
M.
Pavanello
,
W.-C.
Tung
,
F.
Leonarski
, and
L.
Adamowicz
,
J. Chem. Phys.
130
,
074105
(
2009
).
19.
W.
Cencek
and
J.
Rychlewski
,
J. Chem. Phys.
102
,
2533
(
1995
).
20.
S.
Bubin
,
M.
Pavanello
,
W.-C.
Tung
,
K. L.
Skarkey
, and
L.
Adamowicz
,
Chem. Rev.
113
,
36
(
2013
).
21.
M.
Pavanello
,
M.
Cafiero
,
S.
Bubin
, and
L.
Adamowicz
,
Int. J. Quantum Chem.
108
,
2291
(
2008
).
22.
J.
Rychlewski
,
W.
Cencek
, and
J.
Komasa
,
Chem. Phys. Lett.
229
,
657
(
1994
).
23.
S.
Bubin
,
M.
Cafiero
, and
L.
Adamowicz
,
Adv. Chem. Phys.
131
,
377
(
2005
).
24.
N. C.
Handy
,
Y.
Yamaguchi
, and
H. F.
Schaefer
 III
,
J. Chem. Phys.
84
,
4481
(
1986
).
25.
W.
Cencek
and
K.
Kutzelnigg
,
Chem. Phys. Lett.
266
,
383
(
1997
).
26.
K. L.
Sharkey
,
S.
Bubin
, and
L.
Adamowicz
,
Phys. Rev. A
83
,
012506
(
2011
).
27.
D.
Baye
,
Phys. Rev. A
86
,
062514
(
2012
).
28.
D. P.
Shelton
,
Phys. Rev. A
36
,
3032
(
1987
).
29.
S.
Bubin
,
M.
Stanke
, and
L.
Adamowicz
,
J. Chem. Phys.
134
,
024103
(
2011
).
30.
M.
Stanke
,
S.
Bubin
, and
L.
Adamowicz
,
Phys. Rev. A
79
,
060501
(
2009
).
31.
T.
Orlikowski
and
L.
Wolniewicz
,
Chem. Phys. Lett.
24
,
461
(
1974
).
32.
C.
Schwartz
and
R. J.
Le Roy
,
J. Mol. Spectrosc.
121
,
420
(
1987
).
33.
M. F. V.
Lundsgaard
and
H.
Rudolph
,
J. Chem. Phys.
111
,
6724
(
1999
).

Supplementary Material

You do not currently have access to this content.