Vibrational and electronic photodissociation spectra of mass-selected protonated benzaldehyde-(water)n clusters, [BZ-(H2O)n]H+ with n ≤ 5, are analyzed by quantum chemical calculations to determine the protonation site in the ground electronic state (S0) and ππ* excited state (S1) as a function of microhydration. IR spectra of [BZ-(H2O)n]H+ with n ≤ 2 are consistent with BZH+-(H2O)n type structures, in which the excess proton is localized on benzaldehyde. IR spectra of clusters with n ≥ 3 are assigned to structures, in which the excess proton is located on the (H2O)n solvent moiety, BZ-(H2O)nH+. Quantum chemical calculations at the B3LYP, MP2, and ri-CC2 levels support the conclusion of proton transfer from BZH+ to the solvent moiety in the S0 state for hydration sizes larger than the critical value nc = 3. The vibronic spectrum of the S1 ← S0 transition (ππ*) of the n = 1 cluster is consistent with a cis-BZH+-H2O structure in both electronic states. The large blueshift of the S1 origin by 2106 cm−1 upon hydration with a single H2O ligand indicates that the proton affinity of BZ is substantially increased upon S1 excitation, thus strongly destabilizing the hydrogen bond to the solvent. The adiabatic S1 excitation energy and vibronic structure calculated at the ri-CC2/aug-cc-pVDZ level agrees well with the measured spectrum, supporting the notion of a cis-BZH+-H2O geometry. The doubly hydrated species, cis-BZH+-(H2O)2, does not absorb in the spectral range of 23 000–27 400 cm−1, because of the additional large blueshift of the ππ* transition upon attachment of the second H2O molecule. Calculations predict roughly linear and large incremental blueshifts for the ππ* transition in [BZ-(H2O)n]H+ as a function of n. In the size range n ≥ 3, the calculations predict a proton transfer from the (H2O)nH+ solvent back to the BZ solute upon electronic ππ* excitation.

1.
V. A.
Koptyug
,
Top. Curr. Chem.
122
,
1
(
1984
);
M. B.
Smith
and
J.
March
,
Advanced Organic Chemistry: Reactions, Mechanisms, and Structure
, 5th ed. (
Wiley
,
New York
,
2001
);
G. A.
Olah
,
Angew. Chem., Int. Ed.
34
,
1393
(
1995
);
2.
A. G. G. M.
Tielens
,
Annu. Rev. Astron. Astrophys.
46
,
289
(
2008
);
T.
Snow
,
L. V.
Page
,
Y.
Keheyan
 et al.,
Nature (London)
391
,
259
(
1998
);
U. J.
Lorenz
,
N.
Solca
,
J.
Lemaire
 et al.,
Angew. Chem., Int. Ed.
46
,
6714
(
2007
);
H.
Knorke
,
J.
Langer
,
J.
Oomens
 et al.,
Astrophys. J. Lett.
706
,
L66
(
2009
);
O.
Dopfer
, in
PAHs and the Universe: A Symposium to Celebrate the 25th Anniversary of the PAH Hypothesis
, edited by
A. G. G. M.
Tielens
and
C.
Joblin
(
EAS Publication Series
,
2011
), Vol.
46
, p.
103
.
3.
A. M.
Ricks
,
G. E.
Douberly
, and
M. A.
Duncan
,
Astrophys. J.
702
,
301
(
2009
);
I.
Alata
,
C.
Dedonder
,
M.
Broquier
 et al.,
J. Am. Chem. Soc.
132
,
17483
(
2010
).
[PubMed]
4.
I.
Alata
,
R.
Omidyan
,
M.
Broquier
 et al.,
Phys. Chem. Chem. Phys.
12
,
14456
(
2010
).
5.
T. R.
Rizzo
,
J. A.
Stearns
, and
O. V.
Boyarkin
,
Int. Rev. Phys. Chem.
28
,
481
(
2009
);
A.
Svendsen
,
U. J.
Lorenz
,
O. V.
Boyarkin
 et al.,
Rev. Sci. Instrum.
81
,
073107
(
2010
);
[PubMed]
C. M.
Leavitt
,
A. B.
Wolk
,
J. A.
Fournier
 et al.,
J. Phys. Chem. Lett.
3
,
1099
(
2012
);
[PubMed]
J. G.
Redwine
,
Z. A.
Davis
,
N. L.
Burke
 et al.,
Int. J. Mass Spectrom.
348
,
9
(
2013
);
A.
Fujihara
,
H.
Matsumoto
,
Y.
Shibata
 et al.,
J. Phys. Chem. A
112
,
1457
(
2008
);
[PubMed]
G. E.
Douberly
,
A. M.
Ricks
,
P. V. R.
Schleyer
 et al.,
J. Phys. Chem. A
112
,
4869
(
2008
);
[PubMed]
F. X.
Hardy
,
O.
Gause
,
C. A.
Rice
 et al.,
Astrophys. J. Lett.
778
,
L30
(
2013
);
O.
Krechkivska
,
Y.
Liu
,
K. L. K.
Lee
 et al.,
J. Phys. Chem. Lett.
4
,
3728
(
2013
);
C.
Marian
,
D.
Nolting
, and
R.
Weinkauf
,
Phys. Chem. Chem. Phys.
7
,
3306
(
2005
);
[PubMed]
I.
Alata
,
J.
Bert
,
M.
Broquier
 et al.,
J. Phys. Chem. A
117
,
4420
(
2013
);
[PubMed]
I.
Alata
,
R.
Omidyan
,
M.
Broquier
 et al.,
Chem. Phys.
399
,
224
(
2012
);
I.
Alata
,
M.
Broquier
,
C.
Dedonder
 et al.,
Chem. Phys.
393
,
25
(
2012
);
N.
Solcà
and
O.
Dopfer
,
Chem. Phys. Lett.
342
,
191
(
2001
);
N.
Solcà
and
O.
Dopfer
,
J. Am. Chem. Soc.
126
,
1716
(
2004
);
[PubMed]
N.
Solcà
and
O.
Dopfer
,
Angew. Chem., Int. Ed.
42
,
1537
(
2003
);
F. M.
Pasker
,
N.
Solcà
, and
O.
Dopfer
,
J. Phys. Chem. A
110
,
12793
(
2006
);
[PubMed]
A.
Patzer
,
M.
Schütz
,
C.
Jouvet
 et al.,
J. Phys. Chem. A
117
,
9785
(
2013
).
[PubMed]
6.
N. S.
Nagornova
,
T. R.
Rizzo
, and
O. V.
Boyarkin
,
Science
336
,
320
(
2012
).
7.
I.
Alata
,
R.
Omidyan
,
C.
Dedonder-Lardeux
 et al.,
Phys. Chem. Chem. Phys.
11
,
11479
(
2009
).
8.
I.
Alata
,
M.
Broquier
,
C.
Dedonder-Lardeux
 et al.,
J. Chem. Phys.
134
,
074307
(
2011
).
9.
N.
Solcà
and
O.
Dopfer
,
J. Am. Chem. Soc.
125
,
1421
(
2003
).
10.
A.
Patzer
,
M.
Zimmermann
,
I.
Alata
 et al.,
J. Phys. Chem. A
114
,
12600
(
2010
).
11.
S.
Chakraborty
,
A.
Patzer
, and
O.
Dopfer
,
J. Chem. Phys.
133
,
044307
(
2010
).
12.
M.
Bahou
,
Y. J.
Wu
, and
Y. P.
Lee
,
J. Chem. Phys.
136
,
154304
(
2012
);
[PubMed]
M.
Bahou
,
Y. J.
Wu
, and
Y. P.
Lee
,
Phys. Chem. Chem. Phys.
15
,
1907
(
2013
);
[PubMed]
M.
Bahou
,
Y. J.
Wu
, and
Y. P.
Lee
,
J. Phys. Chem. Lett.
4
,
1989
(
2013
);
[PubMed]
I.
Garkusha
,
J.
Fulara
,
A.
Nagy
 et al.,
J. Am. Chem. Soc.
132
,
14979
(
2010
);
[PubMed]
I.
Garkusha
,
J.
Fulara
, and
J. P.
Maier
,
J. Mol. Struct.
1025
,
147
(
2012
);
I.
Garkusha
,
A.
Nagy
,
J.
Fulara
, et al.,
J. Phys. Chem. A
117
,
351
(
2013
).
[PubMed]
13.
B.
Brutschy
,
Chem. Rev.
92
,
1567
(
1992
).
14.
15.
K.
Kleinermanns
,
C.
Janzen
,
D.
Spangenberg
 et al.,
J. Phys. Chem. A
103
,
5232
(
1999
).
16.
M.
Miyazaki
,
A.
Fujii
,
T.
Ebata
 et al.,
Chem. Phys. Lett.
399
,
412
(
2004
).
17.
M.
Miyazaki
,
A.
Fujii
,
T.
Ebata
 et al.,
Phys. Chem. Chem. Phys.
5
,
1137
(
2003
).
18.
N.
Solcà
and
O.
Dopfer
,
J. Phys. Chem. A
107
,
4046
(
2003
).
19.
S. R.
Mercier
,
O. V.
Boyarkin
,
A.
Kamariotis
 et al.,
J. Am. Chem. Soc.
128
,
16938
(
2006
).
20.
T. M.
Chang
,
J. S.
Prell
,
E. R.
Warrick
 et al.,
J. Am. Chem. Soc.
134
,
15805
(
2012
).
21.
G. A.
Olah
,
G.
Rasul
,
C.
York
 et al.,
J. Am. Chem. Soc.
117
,
11211
(
1995
).
22.
B.
Chiavarino
,
M. E.
Crestoni
,
S.
Fornarini
 et al.,
J. Phys. Chem.
A
110
,
9352
(
2006
).
23.
B. S.
Freiser
and
J. L.
Beauchamp
,
J. Am. Chem. Soc.
99
,
3214
(
1977
).
24.
C. J.
Cassady
,
B. S.
Freiser
, and
D. H.
Russell
,
Org. Mass Spectrom.
18
,
378
(
1983
).
25.
O.
Dopfer
,
Int. Rev. Phys. Chem.
22
,
437
(
2003
);
M.
Fujii
and
O.
Dopfer
,
Int. Rev. Phys. Chem.
31
,
131
(
2012
).
26.
A.
Patzer
,
S.
Chakraborty
, and
O.
Dopfer
,
Phys. Chem. Chem. Phys.
12
,
15704
(
2010
).
27.
C.
Camy-Peyret
,
J. M.
Flaud
,
G.
Guelachvili
 et al.,
Mol. Phys.
26
,
825
(
1973
).
28.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
 et al., Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford, CT,
2009
.
29.
P. J.
Linstrom
and
W. G.
Mallard
,
NIST Chemistry WebBook
(
NIST Standards and Technology
,
Gaithersburg MD
,
2014
), see http://webbook.nist.gov.
30.
R.
Ahlrichs
,
M.
Bär
,
M.
Häser
 et al.,
Chem. Phys. Lett.
162
,
165
(
1989
).
31.
C. M.
Western
, PGOPHER, University of Bristol, Bristol, U.K.,
2010
, see http://pgopher.chm.bris.ac.uk.
32.
N.
Solcà
and
O.
Dopfer
,
Chem. Phys. Lett.
347
,
59
(
2001
).
33.
M.
Miyazaki
,
A.
Fujii
,
T.
Ebata
 et al.,
Chem. Phys. Lett.
349
,
431
(
2001
).
34.
U.
Lorenz
,
N.
Solcà
, and
O.
Dopfer
,
Chem. Phys. Lett.
406
,
321
(
2005
);
S.
Chakraborty
,
A.
Patzer
,
A.
Lagutschenkov
 et al.,
Chem. Phys. Lett.
485
,
49
(
2010
);
S.
Chakraborty
,
A.
Patzer
,
A.
Lagutschenkov
 et al.,
Int. J. Mass Spectrom.
297
,
85
(
2010
).
35.
E. S.
Kryachko
and
M. T.
Nguyen
,
J. Phys. Chem. A
105
,
153
(
2001
).
36.
T. C.
Cheng
,
B.
Bandyopadhyay
,
J. D.
Mosley
 et al.,
J. Am. Chem. Soc.
134
,
13046
(
2012
).
37.
C.
Unterberg
,
A.
Jansen
, and
M.
Gerhards
,
J. Chem. Phys.
113
,
7945
(
2000
);
K.
Tanabe
,
M.
Miyazaki
,
M.
Schmies
 et al.,
Angew. Chem., Int. Ed.
51
,
6604
(
2012
).
38.
H.
Abe
,
S.
Kamei
,
N.
Mikami
 et al.,
Chem. Phys. Lett.
109
,
217
(
1984
).
39.
C. R.
Silva
and
J. P.
Reilly
,
J. Phys. Chem.
100
,
17111
(
1996
).
40.
N.
Solcà
and
O.
Dopfer
,
Chem. Eur. J.
9
,
3154
(
2003
).
41.
D. J.
Goebbert
and
P. G.
Wenthold
,
Eur. J. Mass Spectrom.
10
,
837
(
2004
).
42.
E. P. L.
Hunter
and
S. G.
Lias
,
J. Phys. Chem. Ref. Data
27
,
413
(
1998
).
43.
G.
Herzberg
,
Molecular Spectra and Molecular Structure. II. Infrared and Raman Spectra of Polyatomic Molecules
(
Krieger Publishing Company
,
Malabar, Florida
,
1991
).
44.
A.
Fujii
and
K.
Mizuse
,
Int. Rev. Phys. Chem.
32
,
266
(
2013
).
45.
See supplementary material at http://dx.doi.org/10.1063/1.4869341 for (1) structures of cw1-x and tw1-x isomers, (2) NBO charges of [cis-BZ-(H2O)n]H+ with n ≤ 4, (3) IR spectrum of H3O+-BZ(π), (4) molecular orbitals, (5) and (6) structures of [cis-BZ-(H2O)n]H+ with n ≤ 4 in S0 and S1, (7) PA of (H2O)n and BZ in S0 and ππ* state, (8) bond distances in the O⋯H⋯O proton bridge in [cis-BZ-(H2O)n]H+.

Supplementary Material

You do not currently have access to this content.