We present a benchmark theoretical investigation on the electronic structure and singlet-triplet(S-T) gap of 1- and 2-naphthyl cations using the CCSD(T) method. Our calculations reveal that the ground states of both the naphthyl cations are singlet, contrary to the results obtained by DFT/B3LYP calculations reported in previous theoretical studies. However, the triplet states obtained in the two structural isomers of naphthyl cation are completely different. The triplet state in 1-naphthyl cation is (π,σ) type, whereas in 2-naphthyl cation it is (σ,σ) type. The S-T gaps in naphthyl cations and the relative stability ordering of the singlet and the triplet states are highly sensitive to the basis-set quality as well as level of correlation, and demand for inclusion of perturbative triples in the coupled-cluster ansatz.

1.
T.
Henning
and
F.
Salama
,
Science
282
,
2204
(
1998
).
2.
A. G. G. M.
Tielens
,
The Physics and Chemistry of the Interstellar Medium
(
Cambridge University Press
,
2005
).
3.
G. C.
Sloan
,
T. L.
Hayward
,
L. J.
Allamandola
,
J. D.
Bregman
,
B.
DeVito
, and
D. M.
Hudgins
,
Astrophys. J. Lett.
513
,
L65
(
1999
).
4.
A.
Leger
and
L.
Dhendecourt
,
Astron. Astrophys.
146
,
81
(
1985
).
5.
D. M.
Hudgins
,
Polycyclic Aromat. Compd.
22
,
469
(
2002
).
6.
H. A.
Galué
and
O.
Jos
,
Astrophys. J.
746
,
83
(
2012
).
7.
S.
Iglesias-Groth
,
A.
Manchado
,
D. A.
García-Hernández
,
J. I. G.
Hernández
, and
D. L.
Lambert
,
Astrophys. J. Lett.
685
,
L55
(
2008
).
8.
S.
Rayne
and
K.
Forest
,
Comput. Theor. Chem.
983
,
69
(
2012
).
9.
D.
Ascenzi
,
D.
Bassi
,
P.
Franceschi
,
O.
Hadjar
,
P.
Tosi
,
M.
Di Stefano
,
M.
Rosi
, and
A.
Sgamellotti
,
J. Chem. Phys.
121
,
6728
(
2004
).
10.
S. J.
Klippenstein
,
Int. J. Mass Spectrom. Ion Processes
167–168
,
235
(
1997
).
11.
K.
Fujiwara
,
A.
Harada
, and
J.
Aihara
,
J. Mass Spectrom.
31
,
1216
(
1996
).
12.
P.
Du
,
F.
Salama
, and
G. H.
Loew
,
Chem. Phys.
173
,
421
(
1993
).
13.
H.
Alvaro Galué
and
J.
Oomens
,
Angew. Chem., Int. Ed.
50
,
7004
(
2011
).
14.
L. V.
Slipchenko
and
A. I.
Krylov
,
J. Chem. Phys.
117
,
4694
(
2002
).
15.
A. I.
Krylov
,
Chem. Phys. Lett.
338
,
375
(
2001
).
16.
J.
Baker
,
A.
Scheiner
, and
J.
Andzelm
,
Chem. Phys. Lett.
216
,
380
(
1993
).
17.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
 et al, GAUSSIAN 09, Revision B.01, Gaussian, Inc., Wallingford, CT,
2009
.
18.
J. T. H.
Dunning
,
J. Chem. Phys.
90
,
1007
(
1989
).
19.
M.
Rittby
and
R. J.
Bartlett
,
J. Phys. Chem.
92
,
3033
(
1988
).
20.
G. E.
Scuseria
,
Chem. Phys. Lett.
176
,
27
(
1991
).
21.
J.
Gauss
,
W. J.
Lauderdale
,
J. F.
Stanton
,
J. D.
Watts
, and
R. J.
Bartlett
,
Chem. Phys. Lett.
182
,
207
(
1991
).
22.
K. L.
Bak
,
P.
Jørgensen
,
J.
Olsen
,
T.
Helgaker
, and
W.
Klopper
,
J. Chem. Phys.
112
,
9229
(
2000
).
23.
A.
Halkier
,
T.
Helgaker
,
P.
Jørgensen
,
W.
Klopper
,
H.
Koch
,
J.
Olsen
, and
A. K.
Wilson
,
Chem. Phys. Lett.
286
,
243
(
1998
).
24.
T.
Helgaker
,
W.
Klopper
,
H.
Koch
, and
J.
Noga
,
J. Chem. Phys.
106
,
9639
(
1997
).
25.
K. A.
Peterson
,
D. E.
Woon
, and
T. H.
Dunning
,
J. Chem. Phys.
100
,
7410
(
1994
).
26.
M.
Kamiya
and
S.
Hirata
,
J. Chem. Phys.
125
,
074111
(
2006
).
27.
CFOUR (Coupled-Cluster Techniques for Computational Chemistry), a quantum-chemical program package by
J.
Gauss
,
J. F.
Stanton
,
M. E.
Harding
,
P. G.
Szalay
, and
R. J.
Bartlett
with contributions from
A. A.
Auer
,
U.
Benedikt
,
C.
Berger
,
D. E.
Bernholdt
,
Y. J.
Bomble
,
L.
Cheng
,
O.
Christiansen
,
M.
Heckert
,
O.
Heun
,
C.
Huber
,
T. C.
Jagau
,
D.
Jonsson
,
J.
Jusélius
,
K.
Klein
,
W. J.
Lauderdale
,
D. A.
Matthews
,
T.
Metzroth
,
L. A.
Mück
,
D. P.
O’Neill
,
D. R.
Price
,
E.
Prochnow
,
C.
Puzzarini
,
K.
Ruud
,
F.
Schiffmann
,
W.
Schwalbach
,
S.
Stopkowicz
,
A.
Tajti
,
J.
Vázquez
,
F.
Wang
,
J. D.
Watts
and the integral packages MOLECULE (
J.
Almlöf
and
P. R.
Taylor
), PROPS (
P. R.
Taylor
), ABACUS (
T.
Helgaker
,
H. J. A.
Jensen
,
P.
Jørgensen
, and
J.
Olsen
), and ECP routines by
A. V.
Mitin
and
C.
van Wüllen
. For the current version, see http://www.cfour.de.
28.
Y.
Shao
,
L. F.
Molnar
,
Y.
Jung
,
J.
Kussmann
,
C.
Ochsenfeld
,
S. T.
Brown
,
A. T. B.
Gilbert
,
L. V.
Slipchenko
,
S. V.
Levchenko
,
D. P.
O’Neill
,
R. A.
DiStasio
 Jr.
,
R. C.
Lochan
,
T.
Wang
,
G. J. O.
Beran
,
N. A.
Besley
,
J. M.
Herbert
,
C.
Yeh Lin
,
T.
Van Voorhis
,
S.
Hung Chien
,
A.
Sodt
,
R. P.
Steele
,
V. A.
Rassolov
,
P. E.
Maslen
,
P. P.
Korambath
,
R. D.
Adamson
,
B.
Austin
,
J.
Baker
,
E. F. C.
Byrd
,
H.
Dachsel
,
R. J.
Doerksen
,
A.
Dreuw
,
B. D.
Dunietz
,
A. D.
Dutoi
,
T. R.
Furlani
,
S. R.
Gwaltney
,
A.
Heyden
,
S.
Hirata
,
C.-P.
Hsu
,
G.
Kedziora
,
R. Z.
Khalliulin
,
P.
Klunzinger
,
A. M.
Lee
,
M. S.
Lee
,
W.
Liang
,
I.
Lotan
,
N.
Nair
,
B.
Peters
,
E. I.
Proynov
,
P. A.
Pieniazek
,
Y.
Min Rhee
,
J.
Ritchie
,
E.
Rosta
,
C.
David Sherrill
,
A. C.
Simmonett
,
J. E.
Subotnik
,
H.
Lee Woodcock Iii
,
W.
Zhang
,
A. T.
Bell
,
A. K.
Chakraborty
,
D. M.
Chipman
,
F. J.
Keil
,
A.
Warshel
,
W. J.
Hehre
,
H. F.
Schaefer Iii
,
J.
Kong
,
A. I.
Krylov
,
P. M. W.
Gill
, and
M.
Head-Gordon
,
Phys. Chem. Chem. Phys.
8
,
3172
(
2006
).
29.
See supplementary material at http://dx.doi.org/10.1063/1.4868485 for absolute energies, details of geometries, Lowdin population analysis, and error analysis.
30.
J. A.
Piest
,
J.
Oomens
,
J.
Bakker
,
G.
von Helden
, and
G.
Meijer
,
Spectrochim. Acta Mol.
57
(
4
),
717
735
(
2001
).
31.
H.
Alvaro Galué
,
O.
Pirali
, and
J.
Oomens
,
Astron. Astrophys.
517
,
A15
(
2010
).
32.
NIST Computational Chemistry Comparison and Benchmark Database, NIST Standard Reference Database Number 101, Release 16a, August 2013, edited by
Russell D.
Johnson
 III
, see http://cccbdb.nist.gov/.

Supplementary Material

You do not currently have access to this content.