High quality, ab initio calculations are reported for the potential energy curves governing the interactions of four singly-charged lanthanide ions (Yb+, Eu+, Lu+, and Gd+) with the rare gases (RG = He–Xe). Scalar-relativistic coupled cluster calculations are used for the first three S-state ions, but for Gd+(10D°) it is necessary to take the interaction anisotropy into account with the help of the multi-reference technique. The potential energy curves are used to determine the ion mobility and other transport properties describing the motion of the ions through the dilute RG, both as functions of the temperature, T, in the low-field limit, and at fixed T as functions of the ratio of the electrostatic field strength to the gas number density, E/N. The calculated mobilities are in good agreement with the very limited experimental data that have become available recently. The calculations show a pronounced dependence of the transport properties on the electronic configuration of the ion, as well as a significant effect of the spin-orbit coupling on the transport properties of the Gd+ ion, and predict that state-specific mobilities could be detectable in Gd+–RG experiments.

1.
N. J.
Mason
,
J. Phys. D
42
,
194003
(
2009
).
2.
J. P.
Harris
,
A. M.
Gardner
,
T. G.
Wright
,
W. H.
Breckenridge
, and
L. A.
Viehland
,
J. Phys. Chem. A
116
,
4995
(
2012
).
3.
L. A.
Viehland
,
Chem. Phys.
179
,
71
(
1994
).
4.
See www.lxcat.net for Plasma Data Exchange Project.
5.
H.
Helm
,
Chem. Phys. Lett.
36
,
97
(
1975
).
6.
H.
Helm
,
J. Phys. B
9
,
2931
(
1976
).
7.
H.
Helm
and
M. T.
Elford
,
J. Phys. B
10
,
983
(
1977
).
8.
H.
Helm
and
M. T.
Elford
,
J. Phys. B
10
,
3849
(
1977
).
9.
P. R.
Kemper
and
M. T.
Bowers
,
J. Am. Chem. Soc.
112
,
3231
(
1990
).
10.
P. R.
Kemper
and
M. T.
Bowers
,
J. Phys. Chem.
95
,
5134
(
1991
).
11.
M. T.
Bowers
,
P. R.
Kemper
,
G.
von Helden
, and
P. A. M.
van Koppen
,
Science
260
,
1446
(
1993
).
12.
W. S.
Taylor
,
E. M.
Spicer
, and
D. F.
Barnas
,
J. Phys. Chem. A
103
,
643
(
1999
).
13.
C.
Iceman
,
C.
Rue
,
R. M.
Moision
,
B. K.
Chatterjee
, and
P. B.
Armentrout
,
J. Am. Soc. Mass Spectrom.
18
,
1196
(
2007
).
14.
Y.
Ibrahim
,
E.
Alsharaeh
,
R.
Mabrouki
,
P.
Momoh
,
E.
Xie
, and
M. S.
El-Shall
,
J. Phys. Chem. A
112
,
1112
(
2008
).
15.
J. L.
Elkind
and
P. B.
Armentrout
,
J. Phys. Chem.
91
,
2037
(
1987
).
16.
P. B.
Armentrout
and
J. L.
Beachamp
,
Acc. Chem. Res.
22
,
315
(
1989
).
17.
P. B.
Armentrout
,
Int. Rev. Phys. Chem.
9
,
115
(
1990
).
18.
J. C.
Weisshaar
, “
Control of Transition-Metal Cation Reactivity by Electronic State Selection
,” in
Advances in Chemical Physics: State-Selected and State-To-State Ion-Molecule Reaction Dynamics, Part 1. Experiment
, edited by
C.-Y.
Ng
,
M.
Baer
,
I.
Prigogine
and
S. A.
Rice
(
John Wiley & Sons
,
Hoboken
,
2007
), Vol
82
, Chap. 3, p.
213
.
19.
E. A.
Mason
and
E. W.
McDaniel
,
Transport Properties of Ions in Gases
(
Wiley
,
New York
,
1988
).
20.
A. A.
Buchachenko
,
T. V.
Tscherbul
,
J.
Kłos
,
M. M.
Szczȩśniak
,
G.
Chałasiński
,
R.
Webb
, and
L. A.
Viehland
,
J. Chem. Phys.
122
,
194311
(
2005
).
21.
A. A.
Buchachenko
,
T. G.
Wright
,
E. P. F.
Lee
, and
L. A.
Viehland
,
J. Phys. Chem. A
113
,
14431
(
2009
).
22.
T. G.
Wright
,
B. R.
Gray
,
L. A.
Viehland
, and
B.
Johnsen
,
J. Chem. Phys.
129
,
184307
(
2008
).
23.
L. A.
Viehland
,
B. R.
Gray
, and
T. G.
Wright
,
Mol. Phys.
107
,
2127
(
2009
).
24.
D. M.
Danailov
,
L. A.
Viehland
,
R.
Johnsen
,
T. G.
Wright
, and
E. P. F.
Lee
,
J. Chem. Phys.
127
,
084303
(
2007
).
25.
D. M.
Danailov
,
L. A.
Viehland
,
R.
Johnsen
,
T. G.
Wright
, and
A. S.
Dickinson
,
J. Chem. Phys.
128
,
134302
(
2008
).
26.
A. H.
Jalili
,
N. Seyed
Matin
,
L. A.
Viehland
, and
M.
Shahsavan
,
Chem. Phys.
365
,
94
(
2009
).
27.
E.
Qing
,
L. A.
Viehland
,
E. P. F.
Lee
, and
T. G.
Wright
,
J. Chem. Phys.
124
,
044316
(
2006
).
28.
A.
Yousef
,
Sh.
Shrestha
,
L. A.
Viehland
,
E. P. F.
Lee
,
B. R.
Gray
,
V. L.
Ayles
,
T. G.
Wright
, and
W. H.
Breckenridge
,
J. Chem. Phys.
127
,
154309
(
2007
).
29.
E. P. F.
Lee
,
B. R.
Gray
,
N. A.
Joyner
,
S. H.
Johnson
,
L. A.
Viehland
,
W. H.
Breckenridge
, and
T. G.
Wright
,
Chem. Phys. Lett.
450
,
19
(
2007
).
30.
E. P. F.
Lee
,
L. A.
Viehland
,
R.
Johnsen
,
W. H.
Breckenridge
, and
T. G.
Wright
,
J. Phys. Chem. A
115
,
12126
(
2011
).
31.
M.
Laatiaoui
,
H.
Backe
,
D.
Habs
,
P.
Kunz
, and
M.
Sewtz
,
Eur. Phys. J. D
66
,
232
(
2012
).
32.
Yu.
Ralchenko
,
A. E.
Kramida
,
J.
Reader
, and
NIST ASD Team
,
NIST Atomic Spectra Database
(ver. 4.0.1) (
National Institute of Standards and Technology
,
2010
). Available online http://physics.nist.gov/asd.
33.
V.
Aquilanti
and
F.
Vecchiocattivi
,
Chem. Phys. Lett.
156
,
109
(
1989
).
34.
MOLPRO, version 2010.1, a package of ab initio programs,
H.-J.
Werner
,
P. J.
Knowles
,
R.
Lindh
,
F. R.
Manby
,
M.
Schütz
, and others, Cardiff, UK,
2010
.
35.
M.
Dolg
,
H.
Stoll
, and
H.
Preuss
,
J. Chem. Phys.
90
,
1730
(
1989
).
36.
X.
Cao
and
M.
Dolg
,
J. Mol. Struct.: THEOCHEM
581
,
139
(
2002
).
37.
A. A.
Buchachenko
,
G.
Chałasiński
, and
M. M.
Szczȩśniak
,
Struct. Chem.
18
,
769
(
2007
).
38.
Y.
Wang
and
M.
Dolg
,
Theor. Chem. Acc.
100
,
124
(
1998
).
39.
P.
Zhang
and
A.
Dalgarno
,
J. Phys. Chem. A
111
,
12471
(
2007
).
40.
K.
Beloy
,
Phys. Rev. A
86
,
022521
(
2012
).
41.
D. E.
Woon
and
T. H.
Dunning
 Jr.
,
J. Chem. Phys.
100
,
2975
(
1994
).
42.
T. H.
Dunning
 Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
43.
D. E.
Woon
and
T. H.
Dunning
 Jr.
,
J. Chem. Phys.
98
,
1358
(
1993
).
44.
K. A.
Peterson
,
D.
Figgen
,
E.
Goll
,
H.
Stoll
, and
M.
Dolg
,
J. Chem. Phys.
119
,
11113
(
2003
).
45.
C.
Hampel
,
K.
Peterson
, and
H.-J.
Werner
,
Chem. Phys. Lett.
190
,
1
(
1992
);
J. D.
Watts
,
J.
Gauss
, and
R. J.
Bartlett
,
J. Chem. Phys.
98
,
8718
(
1993
).
46.
U. I.
Safronova
and
M. S.
Safronova
,
Phys. Rev. A
79
,
022512
(
2009
).
47.
J.
Migdalek
,
J. Quantum Spectrosc. Radiat. Transf.
28
,
61
(
1982
).
48.
A. A.
Buchachenko
,
Eur. J. Phys. D
61
,
291
(
2011
).
49.
T. M.
Miller
,
CRC Handbook of Chemistry and Physics
, 83rd ed. (
CRC Press
,
Boca Raton, FL
,
2002
), pp.
10
163
.
50.
P.
Soldán
,
E. P. F.
Lee
, and
T. G.
Wright
,
Phys. Chem. Chem. Phys.
3
,
4661
(
2001
).
51.
S. M.
Cybulski
and
R. R.
Toczylowski
,
J. Chem. Phys.
111
,
10520
(
1999
).
52.
S. F.
Boys
and
F.
Bernardi
,
Mol. Phys.
19
,
553
(
1970
).
53.
H.-J.
Werner
and
P. J.
Knowles
,
J. Chem. Phys.
82
,
5053
(
1985
);
P. J.
Knowles
and
H.-J.
Werner
,
Chem. Phys. Lett.
115
,
259
(
1985
).
54.
D.
Bellert
and
W. H.
Breckenridge
,
Chem. Rev.
102
,
1595
(
2002
).
55.
V.
Aquilanti
and
G.
Grossi
,
J. Chem. Phys.
73
,
1165
(
1980
).
56.
R. V.
Krems
,
G. C.
Groenenboom
, and
A.
Dalgarno
,
J. Phys. Chem. A
108
,
8941
(
2004
).
57.
R. V.
Krems
,
J.
Kłos
,
M. F.
Rode
,
M. M.
Szczȩśniak
,
G.
Chałasiński
, and
A.
Dalgarno
,
Phys. Rev. Lett.
94
,
013202
(
2005
).
58.
H.-J.
Werner
and
P. J.
Knowles
,
J. Chem. Phys.
89
,
5803
(
1988
);
P. J.
Knowles
and
H.-J.
Werner
,
Chem. Phys. Lett.
145
,
514
(
1988
).
59.
M.
Dolg
,
H.
Stoll
,
A.
Savin
, and
H.
Preuss
,
Theor. Chim. Acta
75
,
173
(
1989
).
60.
A.
Berning
,
M.
Schweizer
,
H.-J.
Werner
,
P. J.
Knowles
, and
P.
Palmieri
,
Mol. Phys.
98
,
1823
(
2000
).
61.
L. A.
Viehland
and
Y.
Chang
,
Comput. Phys. Commun.
181
,
1687
(
2010
).
62.
L.
Monchick
and
E. A.
Mason
,
J. Chem. Phys.
35
,
1676
(
1961
).
63.
L. A.
Viehland
and
Y.
Chang
,
Mol. Phys.
110
,
259
(
2012
).
64.
L. A.
Viehland
,
Int. J. Ion Mobility Spectrom.
15
,
21
(
2012
).
65.
E. P. F.
Lee
and
T. G.
Wright
, personal communications to
L. A.
Viehland
(
2011
–2013).
You do not currently have access to this content.