It has been widely recognized that the combination of carbon nanotube (CNT) and liquid crystals (LCs) not only provides a useful way to align CNTs, but also dramatically enhances the order in the LC phases, which is especially useful in liquid crystal display (LCD) technology. As the measure of this phase behavior, the complex specific heat is presented over a wide temperature range for a negative dielectric anisotropy alkoxyphenylbenzoate liquid crystal (9OO4) and CNT composites as a function of CNT concentration. The calorimetric scans were performed under near-equilibrium conditions between 25 and 95 °C, first cooling and then followed by heating for CNT weight percent ranging from ϕw = 0 to 0.2. All 9OO4/CNT mesophases have transition temperatures ∼1 K higher and a crystallization temperature 4 K higher than that of the pure 9OO4. The crystal phase superheats until a strongly first-order specific heat feature is observed, 0.5 K higher than in the pure 9OO4. The transition enthalpy for the nanocomposite mesophases is 10% lower than that observed in the pure 9OO4. The strongly first-order crystallization and melting transition enthalpies are essentially constant over this range of ϕw. Complementary electroclinic measurement on a 0.05 wt. % sample, cooling towards the smectic-C phase from the smectic-A, indicates that the SmA-SmC transition remains mean-field-like in the presence of the CNTs. Given the homogeneous and random distribution of CNTs in these nanocomposites, we interpret these results as arising from the LC-CNT surface interaction pinning the orientational order uniformly along the CNT, without pinning the position of the 9OO4 molecule, leading to a net ordering effect for all phases. These effects of incorporating CNTs into LCs are likely due to “anisotropic orientational” coupling between CNT and LC, the change in the elastic properties of composites and thermal anisotropic properties of the CNTs.

1.
S.
Iijima
,
Nature (London)
354
,
56
(
1991
).
2.
E. T.
Thostenson
,
Z. F.
Ren
, and
T. W.
Chou
,
Compos. Sci. Technol.
61
,
1899
(
2001
).
3.
J. N.
Coleman
,
U.
Khan
, and
Y. K.
Gun'ko
,
Adv. Matter
18
,
689
(
2006
).
4.
J. N.
Coleman
,
U.
Khan
,
W. J.
Blau
, and
Y. K.
Gun'ko
,
Carbon
44
,
1624
(
2006
).
5.
F. H.
Gojny
,
M. H. G.
Wichmann
,
B.
Fiedler
,
I. A.
Kinloch
,
W.
Bauhofer
,
A. H.
Windle
, and
K.
Schulte
,
Polymer
47
,
2036
(
2006
).
6.
Z.
Ounaies
,
C.
Park
,
K. E.
Wise
,
E. J.
Siochi
, and
J. S.
Harrison
,
Compos. Sci. Technol.
63
,
1637
(
2003
).
7.
R.
Haggenmueller
,
C.
Guthy
,
J. R.
Lukes
,
J. E.
Fischer
, and
K. I.
Winey
,
Macromolecules
40
,
2417
(
2007
).
8.
A. R.
Bhattacharyya
,
T. V.
Sreekumar
,
T.
Liu
,
S.
Kumar
,
L. M.
Ericson
,
R. H.
Hauge
, and
R. E.
Smalley
,
Polymer
44
,
2373
(
2003
).
9.
E.
Assouline
,
A.
Lustiger
,
A. H.
Barber
,
C. A.
Cooper
,
E.
Klein
,
E.
Wachtel
, and
H. D.
Wagner
,
J. Polym. Sci., Part B: Polym. Phys.
41
,
520
(
2003
).
10.
J. K. W.
Sandler
,
S.
Pegel
,
M.
Cadek
,
F. H.
Gojny
,
M. V.
Es
,
J.
Lohmar
,
W. J.
Blau
,
K.
Schulte
,
A. H.
Windle
, and
M. S. P.
Shaffer
,
Polymer
45
,
2001
(
2004
).
11.
P.
Potschke
,
T. D.
Fornes
, and
D. R.
Paul
,
Polymer
43
,
3247
(
2002
).
12.
S. B.
Kharchenko
,
J. F.
Douglas
,
J.
Obrzut
,
E. A.
Grulke
, and
K. B.
Migler
,
Nat. Matter
3
,
564
(
2004
).
13.
P.
Poncharal
,
Z. L.
Wang
,
D.
Ugarate
, and
W. A.
de Heer
,
Science
283
,
1513
(
1999
).
14.
L.
Wang
and
Z. M.
Dang
,
Appl. Phys. Lett.
87
,
042903
(
2005
).
15.
X. C.
Zhang
,
B. S.
Xu
,
H. D.
Wang
and
Y. X.
Wu
,
J. Appl. Phys.
100
,
113524
(
2006
).
16.
G. L.
Zhao
,
D.
Bagayoko
, and
L.
Yang
,
J. Appl. Phys.
99
,
114311
(
2006
).
17.
S.
Sinha
,
S.
Barjami
,
G.
Iannacchione
,
A.
Schwab
, and
G.
Muench
,
J. Nanopart. Res.
7
,
651
(
2005
).
18.
O.
Stephan
,
D.
Taverna
,
M.
Kociak
,
K.
Suenaga
,
L.
Henrard
, and
C.
Colliex
,
Phys. Rev. B
66
,
155422
(
2002
).
19.
A.
Madarhri
,
G.
Pecastings
,
F.
Carmona
, and
M. E.
Achour
,
J. Microwave Optoelectron.
6
,
38
(
2007
).
20.
Y.
Sato
,
M.
Terauchi
,
Y.
Saito
, and
R.
Saito
,
J. Electron Microsc.
55
,
137
(
2006
).
21.
P.
Potschke
,
S. M.
Dudkin
, and
I.
Alig
,
Polymer
44
,
5023
(
2003
).
22.
K.
Ahmad
,
W.
Pan
, and
S. L.
Shi
,
Appl. Phys. Lett.
89
,
133122
(
2006
).
23.
R. H.
Baughman
,
A. A.
Zakhidov
, and
W. A.
de Heer
,
Science
297
,
787
(
2002
).
24.
P. G.
Collins
and
P.
Avouris
,
Sci. Am.
283
,
62
(
2000
).
25.
A.
Javey
,
Q.
Wang
,
A.
Urai
,
Y.
Li
, and
H.
Dai
,
Nano Lett.
2
,
929
(
2002
).
26.
R.
Martel
,
T.
Schmidt
,
H. R.
Shea
,
T.
Hertel
, and
P.
Avouris
,
Appl. Phys. Lett.
73
,
2447
(
1998
).
27.
J. W.
Goodby
,
M. A.
Waugh
,
S. M.
Stein
,
E.
Chin
,
R.
Pindak
, and
J. S.
Patel
,
Nature
337
,
449
(
1989
).
28.
S.
Chandrashekhar
,
Liquid Crystals
(
Cambridge University Press
,
England
,
1992
).
29.
D.
Demus
,
J. W.
Goodby
,
G.
Gray
,
H.
Spiess
, and
V.
Vill
,
Handbook of Liquid Crystals
(
Wiley-VCH
,
Canada
,
1998
).
30.
P. G.
de Gennes
and
J.
Prost
,
The Physics of Liquid Crystals
(
Oxford University Press
,
Clarendon, Oxford, England
,
1993
).
31.
K. P.
Sigdel
and
G. S.
Iannacchione
,
Eur. Phys. J. E
34
,
34
(
2011
).
32.
G. S.
Iannacchione
,
S.
Park
,
C. W.
Garland
,
R. J.
Birgeneau
, and
R. L.
Leheny
,
Phys. Rev. E
67
,
011709
(
2003
).
33.
G. S.
Iannacchione
,
Fluid Phase Equilib.
222–223
,
177
(
2004
).
34.
H.
Duran
,
B.
Gazdecki
,
A.
Yamashita
, and
T.
Kyu
,
Liq. Cryst.
32
,
815
(
2005
).
35.
A. M.
Somoza
,
C.
Sagui
, and
C.
Roland
,
Phys. Rev. B
63
,
081403
(R) (
2001
).
36.
W.
Song
and
A. H.
Windle
,
Macromolecules
38
,
6181
(
2005
).
37.
W.
Song
,
I. A.
Kinloch
, and
A. H.
Windle
,
Science
302
,
1363
(
2003
).
38.
S.
Zhang
and
S.
Kumar
,
Small
4
,
1270
(
2008
).
39.
H. Y.
Chen
,
W.
Lee
, and
N. A.
Clark
,
Appl. Phys. Lett.
90
,
033510
(
2007
).
40.
H. Y.
Chen
and
W.
Lee
,
Opt. Rev.
12
,
223
(
2005
).
41.
R.
Basu
and
G. S.
Iannacchione
,
Phys. Rev. E
81
,
051705
(
2010
).
42.
R.
Basu
,
K. A.
Boccuzzi
,
S.
Ferjani
, and
C.
Rosenblatt
,
Appl. Phys. Lett.
97
,
121908
(
2010
).
43.
R.
Basu
and
G.
Iannacchione
,
J. Appl. Phys.
106
,
124312
(
2009
).
44.
R.
Basu
,
C. L.
Chen
, and
C.
Rosenblatt
,
J. Appl. Phys.
109
,
083518
(
2011
).
45.
R.
Basu
,
J. S.
Pendery
,
R. G.
Petschek
,
R. P.
Lemieux
, and
C.
Rosenblatt
,
Phys. Rev. Lett.
107
,
237804
(
2011
).
46.
R.
Basu
,
C.
Rosenblatt
, and
R. P.
Lemieux
,
Liq. Cryst.
39
,
199
(
2012
).
47.
P.
Kalakonda
and
G. S.
Iannacchione
, “
Calorimetric and dielectric study of a negative dielectricanisotropy alkoxy-phenyl-benzoate liquid crystal
” (unpublished).
48.
J. E. K.
Schawe
,
Thermochim. Acta
260
,
1
(
1995
).
49.
N. J.
Coleman
and
D. Q. M.
Craig
,
Int. J. Pharm.
135
,
13
(
1996
).
50.
J. M.
Hutchinson
and
S.
Montserrat
,
J. Therm. Anal.
47
,
103
(
1996
).
51.
A.
Hensel
,
J.
Dobbertin
,
A.
Boller
, and
J. E. K.
Schawe
,
J. Therm. Anal.
46
,
935
(
1996
).
52.
B.
Wunderlich
,
J. Therm. Anal.
48
,
207
(
1997
).
53.
S. R.
Aubuchon
and
P. S.
Gill
,
J. Therm. Anal.
49
,
1039
(
1997
).
54.
S.
Weyer
,
A.
Hensel
, and
C.
Schick
,
Thermochim. Acta
304–305
,
267
(
1997
).
55.
J. E. K.
Schawe
,
Thermochim. Acta
271
,
127
(
1996
).
56.
S.
Garoff
and
R. B.
Meyer
,
Phys. Rev. Lett.
38
,
848
(
1977
).
57.
R.
Berardi
,
H. G.
Kuball
,
R.
Memmer
, and
C.
Zannon
,
J. Chem. Soc., Faraday Trans.
94
,
1229
(
1998
).
58.
Molecular modeling was done using Avogadro: an open-source molecular builder and visualization tool. Version 1.XX. http://avogadro.openmolecules.net/.
You do not currently have access to this content.