We combine explicit correlation via the canonical transcorrelation approach with the density matrix renormalization group and initiator full configuration interaction quantum Monte Carlo methods to compute a near-exact beryllium dimer curve, without the use of composite methods. In particular, our direct density matrix renormalization group calculations produce a well-depth of De = 931.2 cm−1 which agrees very well with recent experimentally derived estimates De = 929.7±2 cm−1 [J. M. Merritt, V. E. Bondybey, and M. C. Heaven, Science324, 1548 (2009)] and De= 934.6 cm−1 [K. Patkowski, V. Špirko, and K. Szalewicz, Science326, 1382 (2009)], as well the best composite theoretical estimates, De = 938±15 cm−1 [K. Patkowski, R. Podeszwa, and K. Szalewicz, J. Phys. Chem. A111, 12822 (2007)] and De=935.1±10 cm−1 [J. Koput, Phys. Chem. Chem. Phys.13, 20311 (2011)]. Our results suggest possible inaccuracies in the functional form of the potential used at shorter bond lengths to fit the experimental data [J. M. Merritt, V. E. Bondybey, and M. C. Heaven, Science324, 1548 (2009)]. With the density matrix renormalization group we also compute near-exact vertical excitation energies at the equilibrium geometry. These provide non-trivial benchmarks for quantum chemical methods for excited states, and illustrate the surprisingly large error that remains for 1

$^1\Sigma ^-_g$
Σg1 state with approximate multi-reference configuration interaction and equation-of-motion coupled cluster methods. Overall, we demonstrate that explicitly correlated density matrix renormalization group and initiator full configuration interaction quantum Monte Carlo methods allow us to fully converge to the basis set and correlation limit of the non-relativistic Schrödinger equation in small molecules.

1.
M.
Kállay
and
P. R.
Surján
,
J. Chem. Phys.
115
,
2945
(
2001
).
2.
G. K.-L.
Chan
and
S.
Sharma
,
Annu. Rev. Phys. Chem.
62
,
465
(
2011
).
3.
D.
Cleland
,
G. H.
Booth
, and
A.
Alavi
,
J. Chem. Phys.
132
,
041103
(
2010
).
4.
G. H.
Booth
,
A. J. W.
Thom
, and
A.
Alavi
,
J. Chem. Phys.
131
,
054106
(
2009
).
5.
6.
T.
Yanai
and
T.
Shiozaki
,
J. Chem. Phys.
136
,
084107
(
2012
).
7.
L.
Kong
,
F. A.
Bischoff
, and
E. F.
Valeev
,
Chem. Rev.
112
,
75
(
2012
).
8.
S.
Ten-no
,
Theor. Chem. Acc.
131
,
1070
(
2012
).
9.
W.
Kutzelnigg
,
Theor. Chim. Acta
68
,
445
(
1985
).
10.
W.
Kutzelnigg
and
W.
Klopper
,
J. Chem. Phys.
94
,
1985
(
1991
).
11.
O.
Sinanoglu
,
J. Chem. Phys.
36
,
706
(
1962
).
12.
M.
Torheyden
and
E. F.
Valeev
,
Phys. Chem. Chem. Phys.
10
,
3410
(
2008
).
13.
G. H.
Booth
,
D.
Cleland
,
A.
Alavi
, and
D. P.
Tew
,
J. Chem. Phys.
137
,
164112
(
2012
).
14.
M.
Torheyden
and
E. F.
Valeev
,
J. Chem. Phys.
131
,
171103
(
2009
).
15.
E.
Neuscamman
,
T.
Yanai
, and
G. K.-L.
Chan
,
Int. Rev. Phys. Chem.
29
,
231
(
2010
).
16.
E.
Neuscamman
,
T.
Yanai
, and
G. K.-L.
Chan
,
J. Chem. Phys.
130
,
124102
(
2009
).
17.
T.
Yanai
and
G. K.-L.
Chan
,
J. Chem. Phys.
124
,
194106
(
2006
).
18.
T.
Yanai
and
G. K.-L.
Chan
,
J. Chem. Phys.
127
,
104107
(
2007
).
19.
D.
Mukherjee
,
Chem. Phys. Lett.
274
,
561
(
1997
).
20.
W.
Kutzelnigg
and
D.
Mukherjee
,
J. Chem. Phys.
107
,
432
(
1997
).
21.
W.
Kutzelnigg
and
D.
Mukherjee
,
J. Chem. Phys.
110
,
2800
(
1999
).
22.
Y.
Ohtsuka
and
S.
Ten-no
,
AIP Conf. Proc.
1456
,
97
(
2012
).
23.
G. K. L.
Chan
and
M.
Head-Gordon
,
J. Chem. Phys.
116
,
4462
(
2002
).
24.
J.
Hachmann
,
W.
Cardoen
, and
G. K. L.
Chan
,
J. Chem. Phys.
125
,
144101
(
2006
).
25.
K. H.
Marti
and
M.
Reiher
,
Phys. Chem. Chem. Phys.
13
,
6750
(
2011
).
26.
O.
Legeza
and
G.
Fáth
,
Phys. Rev. B
53
,
14349
(
1996
).
27.
G. H.
Booth
,
A.
Gruneis
,
G.
Kresse
, and
A.
Alavi
,
Nature (London)
493
,
365
(
2013
).
28.
F. R.
Petruzielo
,
A. A.
Holmes
,
H. J.
Changlani
,
M. P.
Nightingale
, and
C. J.
Umrigar
,
Phys. Rev. Lett.
109
,
230201
(
2012
).
29.
R.
Blankenbecler
and
R. L.
Sugar
,
Phys. Rev. D
27
,
1304
(
1983
).
30.
N.
Trivedi
and
D. M.
Ceperley
,
Phys. Rev. B
41
,
4552
(
1990
).
31.
D. F. B.
ten Haaf
,
H. J. M.
van Bemmel
,
J. M. J.
van Leeuwen
,
W.
van Saarloos
, and
D.
Ceperley
,
Phys. Rev. B
51
,
13039
(
1995
).
32.
M. H.
Kolodrubetz
,
J. S.
Spencer
,
B. K.
Clark
, and
W. M. C.
Foulkes
,
J. Chem. Phys.
138
,
024110
(
2013
).
33.
D. M.
Cleland
,
G. H.
Booth
, and
A.
Alavi
,
J. Chem. Phys.
134
,
024112
(
2011
).
34.
K.
Patkowski
,
R.
Podeszwa
, and
K.
Szalewicz
,
J. Phys. Chem. A
111
,
12822
(
2007
).
35.
J. M.
Merritt
,
V. E.
Bondybey
, and
M. C.
Heaven
,
Science
324
,
1548
(
2009
).
36.
K.
Patkowski
,
V.
Špirko
, and
K.
Szalewicz
,
Science
326
,
1382
(
2009
).
38.
V. E.
Bondybey
,
Chem. Phys. Lett.
109
,
436
(
1984
).
39.
J. M. L.
Martin
,
Chem. Phys. Lett.
303
,
399
(
1999
).
40.
J.
Koput
,
Phys. Chem. Chem. Phys.
13
,
20311
(
2011
).
41.
R. J.
Gdanitz
,
Chem. Phys. Lett.
312
,
578
(
1999
).
42.
M. W.
Schmidt
,
J.
Ivanic
, and
K.
Ruedenberg
,
J. Phys. Chem. A
114
,
8687
(
2010
).
43.
J. G.
Hill
and
K. A.
Peterson
,
Phys. Chem. Chem. Phys.
12
,
10460
(
2010
).
44.
S.
Sharma
and
G. K.-L.
Chan
,
J. Chem. Phys.
136
,
124121
(
2012
).
45.
S.
Wouters
,
P. A.
Limacher
,
D. V.
Neck
, and
P. W.
Ayers
,
J. Chem. Phys.
136
,
134110
(
2012
).
46.
I. P.
McCulloch
and
M.
Gulacsi
,
Europhys. Lett.
57
,
852
(
2002
).
47.
G. H.
Booth
,
D.
Cleland
,
A. J. W.
Thom
, and
A.
Alavi
,
J. Chem. Phys.
135
,
084104
(
2011
).
48.
G. H.
Booth
,
S. D.
Smart
, and
A.
Alavi
, “
Linear-scaling and parallelisable algorithms for stochastic quantum chemistry
,”
Mol. Phys.
(published online).
49.
T. B.
Adler
,
G.
Knizia
, and
H.-J.
Werner
,
J. Chem. Phys.
127
,
221106
(
2007
).
50.
J. G.
Hill
,
K. A.
Peterson
,
G.
Knizia
, and
H.-J.
Werner
,
J. Chem. Phys.
131
,
194105
(
2009
).
51.
G.
Knizia
,
T. B.
Adler
, and
H.-J.
Werner
,
J. Chem. Phys.
130
,
054104
(
2009
).
52.
D. A.
Mazziotti
,
Chem. Rev.
112
,
244
(
2012
).
53.
D. A.
Mazziotti
,
Chem. Phys. Lett.
289
,
419
(
1998
).
55.
A. E.
DePrince
and
D. A.
Mazziotti
,
J. Chem. Phys.
127
,
104104
(
2007
).
56.
T.
Shiozaki
,
G.
Knizia
, and
H.-J.
Werner
,
J. Chem. Phys.
134
,
034113
(
2011
).
57.
H.-J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
, and
M.
Schütz
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
242
(
2012
).
58.
S. F.
Boys
and
F.
Bernardi
,
Mol. Phys.
19
,
553
(
1970
).
59.
J.
Komasa
,
J.
Rychlewski
, and
K.
Jankowski
,
Phys. Rev. A
65
,
042507
(
2002
).
60.
J. J.
Dorando
,
J.
Hachmann
, and
G. K.-L.
Chan
,
J. Chem. Phys.
127
,
084109
(
2007
).
You do not currently have access to this content.