We present a method for a subsystem-based calculation of indirect nuclear spin-spin coupling tensors within the framework of current-spin-density-functional theory. Our approach is based on the frozen-density embedding scheme within density-functional theory and extends a previously reported subsystem-based approach for the calculation of nuclear magnetic resonance shielding tensors to magnetic fields which couple not only to orbital but also spin degrees of freedom. This leads to a formulation in which the electron density, the induced paramagnetic current, and the induced spin-magnetization density are calculated separately for the individual subsystems. This is particularly useful for the inclusion of environmental effects in the calculation of nuclear spin-spin coupling constants. Neglecting the induced paramagnetic current and spin-magnetization density in the environment due to the magnetic moments of the coupled nuclei leads to a very efficient method in which the computationally expensive response calculation has to be performed only for the subsystem of interest. We show that this approach leads to very good results for the calculation of solvent-induced shifts of nuclear spin-spin coupling constants in hydrogen-bonded systems. Also for systems with stronger interactions, frozen-density embedding performs remarkably well, given the approximate nature of currently available functionals for the non-additive kinetic energy. As an example we show results for methylmercury halides which exhibit an exceptionally large shift of the one-bond coupling constants between 199Hg and 13C upon coordination of dimethylsulfoxide solvent molecules.

1.
T.
Helgaker
,
M.
Jaszunski
, and
K.
Ruud
,
Chem. Rev.
99
,
293
(
1999
).
2.
J.
Autschbach
and
T.
Ziegler
,
Coord. Chem. Rev.
238–239
,
83
(
2003
).
3.
J.
Autschbach
, “
The calculation of NMR parameters in transition metal complexes
,” in
Principles and Applications of DFT in Inorganic Chemistry
,
Structure and Bonding
, Vol.
112
, edited by
N.
Kaltsoyannis
and
J. E.
McGrady
(
Springer
,
Heidelberg
,
2004
), pp.
1
48
.
4.
Calculation of NMR and EPR Parameters. Theory and Applications
, edited by
M.
Kaupp
,
M.
Bühl
, and
V. G.
Malkin
(
Wiley-VCH
,
Weinheim
,
2004
).
5.
R. G.
Parr
and
W.
Yang
,
Density-Functional Theory of Atoms and Molecules
(
Oxford University Press
,
Oxford
,
1989
).
6.
V. G.
Malkin
,
O. L.
Malkina
, and
D. R.
Salahub
,
Chem. Phys. Lett.
221
,
91
(
1994
).
7.
R. M.
Dickson
and
T.
Ziegler
,
J. Phys. Chem.
100
,
5286
(
1996
).
8.
V.
Sychrovský
,
J.
Gräfenstein
, and
D.
Cremer
,
J. Chem. Phys.
113
,
3530
(
2000
).
9.
T.
Helgaker
,
M.
Watson
, and
N. C.
Handy
,
J. Chem. Phys.
113
,
9402
(
2000
).
10.
J.
Autschbach
and
T.
Ziegler
,
J. Chem. Phys.
113
,
936
(
2000
).
11.
J.
Autschbach
and
T.
Ziegler
,
J. Chem. Phys.
113
,
9410
(
2000
).
12.
M. A.
Watson
,
P.
Salek
,
P.
Macak
,
M.
Jaszunski
, and
T.
Helgaker
,
Chem. Eur. J.
10
,
4627
(
2004
).
13.
J.
Autschbach
and
S.
Zheng
,
Annu. Rep. NMR Spectrosc.
67
,
1
(
2009
).
14.
A. S. P.
Gomes
and
C. R.
Jacob
,
Annu. Rep. Prog. Chem., Sect. C: Phys. Chem.
108
,
222
(
2012
).
15.
P.-O.
Åstrand
,
K. V.
Mikkelsen
,
P.
Jørgensen
, and
K.
Ruud
,
J. Chem. Phys.
108
,
2528
(
1998
).
16.
K.
Ruud
,
L.
Frediani
,
R.
Cammi
, and
B.
Mennucci
,
Int. J. Mol. Sci.
4
,
119
(
2003
).
17.
J.
Tomasi
,
B.
Menucci
, and
R.
Cammi
,
Chem. Rev.
105
,
2999
(
2005
).
18.
K. V.
Mikkelsen
,
K.
Ruud
, and
T.
Helgaker
,
J. Comput. Chem.
20
,
1281
(
1999
).
19.
D.
Zaccari
,
V.
Barone
,
J. E.
Peralta
,
R. H.
Contreras
,
O. E.
Taurian
,
E.
Diez
, and
A.
Esteban
,
Int. J. Mol. Sci.
4
,
93
(
2003
).
20.
V.
Sychrovsky
,
B.
Schneider
,
P.
Hobza
,
L.
Zidek
, and
V.
Sklenae
,
Phys. Chem. Chem. Phys.
5
,
734
(
2003
).
21.
M.
Pecul
and
K.
Ruud
,
Magn. Reson. Chem.
42
,
S128
(
2004
).
22.
B.
Wang
,
X.
He
, and
K. M.
Merz
,
J. Chem. Theory Comput.
9
,
4653
(
2013
).
23.
T. A.
Wesolowski
and
A.
Warshel
,
J. Phys. Chem.
97
,
8050
(
1993
).
24.
T. A.
Wesolowksi
, “
One-electron equations for embedded electron density: Challenge for theory and practical payoffs in multi-level modelling of complex polyatomic systems
,” in
Computational Chemistry: Reviews of Current Trends
, edited by
J.
Leszczynski
(
World Scientific
,
2006
), Vol.
10
, Chap. 1, pp.
1
82
.
25.
C. R.
Jacob
,
J.
Neugebauer
, and
L.
Visscher
,
J. Comput. Chem.
29
,
1011
(
2008
).
26.
27.
G.
Senatore
and
K. R.
Subbaswamy
,
Phys. Rev. B
34
,
5754
(
1986
).
28.
C. R.
Jacob
and
J.
Neugebauer
, “
Subsystem density-functional theory
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
(published online).
29.
S.
Zheng
and
J.
Autschbach
,
Chem. Eur. J.
17
,
161
(
2011
).
30.
C. R.
Jacob
and
L.
Visscher
,
J. Chem. Phys.
125
,
194104
(
2006
).
31.
G.
Vignale
and
M.
Rasolt
,
Phys. Rev. B
37
,
10685
(
1988
).
32.
C.
van Wüllen
,
J. Comput. Chem.
23
,
779
(
2002
).
33.
J.
Autschbach
,
J. Chem. Phys.
129
,
094105
(
2008
);
[PubMed]
Erratum
J.
Autschbach
,
J. Chem. Phys.
130
,
209901
(
2009
).
34.
T.
Helgaker
,
M.
Jaszuński
, and
M.
Pecul
,
Prog. Nucl. Magn. Reson. Spectrosc.
53
,
249
(
2008
).
35.
36.
E.
van Lenthe
,
E. J.
Baerends
, and
J. G.
Snijders
,
J. Chem. Phys.
99
,
4597
(
1993
).
37.
E.
van Lenthe
,
E. J.
Baerends
, and
J. G.
Snijders
,
J. Chem. Phys.
101
,
9783
(
1994
).
38.
E.
van Lenthe
,
R.
van Leeuwen
,
E. J.
Baerends
, and
J. G.
Snijders
,
Int. J. Quantum Chem.
57
,
281
(
1996
).
39.
T. A.
Wesolowski
and
J.
Weber
,
Chem. Phys. Lett.
248
,
71
(
1996
).
40.
See http://www.scm.com for ADF2013.01, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands
(accessed 09/21/2013).
41.
C. F.
Guerra
,
J.
Snijders
,
G.
te Velde
, and
E. J.
Baerends
,
Theoret. Chem. Acc.
99
,
391
(
1998
).
42.
G.
te Velde
,
F. M.
Bickelhaupt
,
E. J.
Baerends
,
C. F.
Guerra
,
S. J. A.
van Gisbergen
,
J. G.
Snijders
, and
T.
Ziegler
,
J. Comput. Chem.
22
,
931
(
2001
).
43.
C. R.
Jacob
,
S. M.
Beyhan
,
R. E.
Bulo
,
A. S. P.
Gomes
,
A. W.
Götz
,
K.
Kiewisch
,
J.
Sikkema
, and
L.
Visscher
,
J. Comput. Chem.
32
,
2328
(
2011
).
44.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
45.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
78
,
1396
(
1997
).
46.
S.
Vosko
,
L.
Wilk
, and
M.
Nusair
,
Can. J. Phys.
58
,
1200
(
1980
).
47.
See supplementary material at http://dx.doi.org/10.1063/1.4864053 for solvent shifts of J coupling constants in hydrogen-bonded dimers and mercury complexes using the PBE functional for the first-order perturbed XC potential.
48.
L. H.
Thomas
,
Proc. Cambridge Philos. Soc.
23
,
542
(
1927
).
49.
E.
Fermi
,
Rend. Accad. Lincei
6
,
602
(
1927
).
50.
A.
Lembarki
and
H.
Chermette
,
Phys. Rev. A
50
,
5328
(
1994
).
51.
T. A.
Wesolowski
,
Y.
Ellinger
, and
J.
Weber
,
J. Chem. Phys.
108
,
6078
(
1998
).
52.
T. A.
Wesolowski
and
F.
Tran
,
J. Chem. Phys.
118
,
2072
(
2003
).
53.
C. R.
Jacob
,
T. A.
Wesolowski
, and
L.
Visscher
,
J. Chem. Phys.
123
,
174104
(
2005
).
54.
A. W.
Götz
,
S. M.
Beyhan
, and
L.
Visscher
,
J. Chem. Theory Comput.
5
,
3161
(
2009
).
55.
T. A.
Wesolowski
,
J. Chem. Phys.
106
,
8516
(
1997
).
56.
J.
Neugebauer
,
M. J.
Louwerse
,
P.
Belanzoni
,
T. A.
Wesolowski
, and
E. J.
Baerends
,
J. Chem. Phys.
123
,
114101
(
2005
).
57.
J.
Neugebauer
,
C. R.
Jacob
,
T. A.
Wesolowski
, and
E. J.
Baerends
,
J. Phys. Chem. A
109
,
7805
(
2005
).
58.
M.
Dulak
,
J. W.
Kaminski
, and
T. A.
Wesolowski
,
J. Chem. Theory Comput.
3
,
735
(
2007
).
59.
J.
Autschbach
and
T.
Ziegler
,
J. Am. Chem. Soc.
123
,
3341
(
2001
).
60.
M. A.
Watson
,
N. C.
Handy
,
A. J.
Cohen
, and
T.
Helgaker
,
J. Chem. Phys.
120
,
7252
(
2004
).
61.
Y.
Zhao
and
D. G.
Truhlar
,
J. Chem. Theory Comput.
1
,
415
(
2005
).
62.
R. E.
Bulo
,
C. R.
Jacob
, and
L.
Visscher
,
J. Phys. Chem. A
112
,
2640
(
2008
).
63.
H.
Cybulski
,
M.
Pecul
, and
J.
Sadlej
,
Chem. Phys.
326
,
431
(
2006
).
64.
K.
Sutter
,
L. A.
Truflandier
, and
J.
Autschbach
,
ChemPhysChem
12
,
1448
(
2011
).
65.
J.
Autschbach
and
M.
Sterzel
,
J. Am. Chem. Soc.
129
,
11093
(
2007
).
66.
J.
Autschbach
, and
T.
Ziegler
, “
Relativistic calculation of spin-spin coupling constants
,” in
Calculation of NMR and EPR Parameters. Theory and Applications
, edited by
M.
Kaupp
,
M.
Bühl
, and
V. G.
Malkin
(
Wiley-VCH
,
Weinheim
,
2004
).
67.
S.
Fux
,
K.
Kiewisch
,
C. R.
Jacob
,
J.
Neugebauer
, and
M.
Reiher
,
Chem. Phys. Lett.
461
,
353
(
2008
).
68.
J. D.
Goodpaster
,
N.
Ananth
,
F. R.
Manby
, and
T. F.
Miller
 III
,
J. Chem. Phys.
133
,
084103
(
2010
).
69.
J. D.
Goodpaster
,
T. A.
Barnes
, and
T. F.
Miller
 III
,
J. Chem. Phys.
134
,
164108
(
2011
).
70.
F. R.
Manby
,
M.
Stella
,
J. D.
Goodpaster
, and
T. F.
Miller
 III
,
J. Chem. Theory Comput.
8
,
2564
(
2012
).

Supplementary Material

You do not currently have access to this content.