We introduce a database (HAB11) of electronic coupling matrix elements (Hab) for electron transfer in 11 π-conjugated organic homo-dimer cations. High-level ab inito calculations at the multireference configuration interaction MRCI+Q level of theory, n-electron valence state perturbation theory NEVPT2, and (spin-component scaled) approximate coupled cluster model (SCS)-CC2 are reported for this database to assess the performance of three DFT methods of decreasing computational cost, including constrained density functional theory (CDFT), fragment-orbital DFT (FODFT), and self-consistent charge density functional tight-binding (FODFTB). We find that the CDFT approach in combination with a modified PBE functional containing 50% Hartree-Fock exchange gives best results for absolute Hab values (mean relative unsigned error = 5.3%) and exponential distance decay constants β (4.3%). CDFT in combination with pure PBE overestimates couplings by 38.7% due to a too diffuse excess charge distribution, whereas the economic FODFT and highly cost-effective FODFTB methods underestimate couplings by 37.6% and 42.4%, respectively, due to neglect of interaction between donor and acceptor. The errors are systematic, however, and can be significantly reduced by applying a uniform scaling factor for each method. Applications to dimers outside the database, specifically rotated thiophene dimers and larger acenes up to pentacene, suggests that the same scaling procedure significantly improves the FODFT and FODFTB results for larger π-conjugated systems relevant to organic semiconductors and DNA.

1.
R. A.
Marcus
,
J. Chem. Phys.
24
,
966
(
1956
).
2.
A.
Warshel
,
J. Phys. Chem.
86
,
2218
(
1982
).
3.
M. D.
Newton
,
Chem. Rev.
91
,
767
(
1991
).
4.
E.
Rosta
and
A.
Warshel
,
J. Chem. Theory Comput.
8
,
3574
(
2012
).
5.
Q.
Wu
,
B.
Kaduk
, and
T.
Van Voorhis
,
J. Chem. Phys.
130
,
034109
(
2009
).
6.
7.
A. J.
Cohen
,
P.
Mori-Sanchez
, and
W.
Yang
,
Science
321
,
792
(
2008
).
8.
T.
Pacher
and
L. S.
Cederbaum
,
J. Chem. Phys.
89
,
7367
(
1988
).
9.
W.
Domcke
and
C.
Woywood
,
Chem. Phys. Lett.
216
,
362
(
1993
).
10.
R. J.
Cave
and
M. D.
Newton
,
J. Chem. Phys.
106
,
9213
(
1997
).
11.
R. J.
Cave
and
M. D.
Newton
,
Chem. Phys. Lett.
249
,
15
(
1996
).
12.
R. S.
Mulliken
,
J. Am. Chem. Soc.
74
,
811
(
1952
).
13.
R. S.
Mulliken
and
W. B.
Person
,
Molecular Complexes
(
Wiley
,
New York
,
1969
).
14.
N. S.
Hush
,
Prog. Inorg. Chem.
8
,
391
(
1967
).
15.
N. S.
Hush
,
Electrochim. Acta
13
,
1005
(
1968
).
16.
J. R.
Reimers
and
N. S.
Hush
,
J. Phys. Chem.
95
,
9773
(
1991
).
17.
C.
Creutz
,
M. D.
Newton
, and
N.
Sutin
,
J. Photochem. Photobiol. A
82
,
47
(
1994
).
18.
A. A.
Voityuk
and
N.
Rösch
,
J. Chem. Phys.
117
,
5607
(
2002
).
19.
C.-P.
Hsu
,
Z.-Q.
You
, and
H.-C.
Chen
,
J. Phys. Chem. C
112
,
1204
(
2008
).
20.
A.
Farazdel
,
M.
Dupuis
,
E.
Clementi
, and
A.
Aviram
,
J. Am. Chem. Soc.
112
,
4206
(
1990
).
21.
K.
Senthilkumar
,
F. C.
Grozema
,
F. M.
Bickelhaupt
, and
L. D. A.
Siebbeles
,
J. Chem. Phys.
119
,
9809
(
2003
).
22.
X.
Zeng
,
X.
Hu
, and
W.
Yang
,
J. Chem. Theory Comput.
8
,
4960
(
2012
).
23.
D. M. A.
Smith
,
K. M.
Rosso
,
M.
Dupuis
,
M.
Valiev
, and
T. P.
Straatsma
,
J. Phys. Chem. B
110
,
15582
(
2006
).
24.
A.
Migliore
,
S.
Corni
,
R.
Di Felice
, and
E.
Molinari
,
J. Chem. Phys.
124
,
064501
(
2006
).
25.
A.
Migliore
,
P. H.-L.
Sit
, and
M. L.
Klein
,
J. Chem. Theory Comput.
5
,
307
(
2009
).
26.
Q.
Wu
and
T.
Van Voorhis
,
J. Chem. Phys.
125
,
164105
(
2006
).
27.
Q.
Wu
and
T.
Van Voorhis
,
J. Chem. Theory Comput.
2
,
765
(
2006
).
28.
A.
de la Lande
and
D. R.
Salahub
,
J. Mol. Struct.: THEOCHEM
943
,
115
(
2009
).
29.
H.
Oberhofer
and
J.
Blumberger
,
J. Chem. Phys.
131
,
064101
(
2009
).
30.
H.
Oberhofer
and
J.
Blumberger
,
J. Chem. Phys.
133
,
244105
(
2010
).
31.
M.
Pavanello
and
J.
Neugebauer
,
J. Chem. Phys.
135
,
234103
(
2011
).
32.
M.
Pavanello
,
T.
Van Voorhis
,
L.
Visscher
, and
J.
Neugebauer
,
J. Chem. Phys.
138
,
054101
(
2013
).
33.
J. E.
Subotnik
,
S.
Yeganeh
,
R. J.
Cave
, and
M. A.
Ratner
,
J. Chem. Phys.
129
,
244101
(
2008
).
34.
J. E.
Subotnik
,
R. J.
Cave
,
R. P.
Steele
, and
N.
Shenvi
,
J. Chem. Phys.
130
,
234102
(
2009
).
35.
P. A.
Pieniazek
,
S. A.
Arnstein
,
S. E.
Bradforth
,
A. I.
Krylov
, and
C. D.
Sherrill
,
J. Chem. Phys.
127
,
164110
(
2007
).
36.
L.
Blancafort
and
A. A.
Voityuk
,
J. Phys. Chem. A
110
,
6426
(
2006
).
37.
L.
Blancafort
and
A. A.
Voityuk
,
J. Phys. Chem. A
111
,
4714
(
2007
).
38.
T.
Kubař
and
M.
Elstner
,
J. Phys. Chem. B
114
,
11221
(
2010
).
39.
T.
Kubař
and
M.
Elstner
,
J. R. Soc. Interface
10
,
20130415
(
2013
).
40.
V.
Coropceanu
,
J.
Cornil
,
D. A.
da Silva
,
Y.
Olivier
,
R.
Silbey
, and
J.-L.
Bredas
,
Chem. Rev.
107
,
926
(
2007
).
41.
J. J.
Kwiatkowski
,
J. M.
Frost
, and
J.
Nelson
,
Nano Lett.
9
,
1085
(
2009
).
42.
A.
Troisi
,
D. L.
Cheung
, and
D.
Andrienko
,
Phys. Rev. Lett.
102
,
116602
(
2009
).
43.
H.
Oberhofer
and
J.
Blumberger
,
Phys. Chem. Chem. Phys.
14
,
13846
(
2012
).
44.
H.
Oberhofer
and
J.
Blumberger
,
Angew. Chem., Int. Ed.
49
,
3631
(
2010
).
45.
F.
Gajdos
,
H.
Oberhofer
,
M.
Dupuis
, and
J.
Blumberger
,
J. Phys. Chem. Lett.
4
,
1012
(
2013
).
46.
M.
Breuer
,
K. M.
Rosso
, and
J.
Blumberger
,
Proc. Natl. Acad. Sci. U.S.A.
111
,
611
(
2014
).
47.
T.
Kubař
,
P. B.
Woiczikowski
,
G.
Cuniberti
, and
M.
Elstner
,
J. Phys. Chem. B
112
,
7937
(
2008
).
48.
P. B.
Woiczikowski
,
T.
Kubař
,
R.
Gutírrez
,
G.
Cuniberti
, and
M.
Elstner
,
J. Chem. Phys.
133
,
035103
(
2010
).
49.
P. B.
Woiczikowski
,
T. B.
Steinbrecher
,
T.
Kubař
, and
M.
Elstner
,
J. Phys. Chem. B
115
,
9846
(
2011
).
50.
A.
Heck
,
P. B.
Woiczikowski
,
T.
Kubař
,
B.
Giese
,
M.
Elstner
, and
T. B.
Steinbrecher
,
J. Phys. Chem. B
116
,
2284
(
2012
).
51.
M.
Wolter
,
P. B.
Woiczikowski
,
M.
Elstner
, and
T.
Kubař
,
Phys. Rev. B
85
,
075101
(
2012
).
52.
G.
Lüdemann
,
P. B.
Woiczikowski
,
T.
Kubař
,
M.
Elstner
, and
T. B.
Steinbrecher
,
J. Phys. Chem. B
117
,
10769
(
2013
).
53.
M.
Wolter
,
M.
Elstner
, and
T.
Kubař
,
J. Chem. Phys.
139
,
125102
(
2013
).
54.
K. P.
McKenna
and
J.
Blumberger
,
Phys. Rev. B
86
,
245110
(
2012
).
55.
J.
Blumberger
and
K. P.
McKenna
,
Phys. Chem. Chem. Phys.
15
,
2184
(
2013
).
56.
See supplementary material at http://dx.doi.org/10.1063/1.4867077 for Cartesian coordinates and isosurfaces comparison and discussion of the value of integrated spin density as a diagnostic tool in CDFT calculations.
57.
P. A. M.
Dirac
,
Proc. R. Soc. London, Ser. A
123
,
714
(
1929
).
58.
59.
S. H.
Vosko
,
L.
Wilk
, and
M.
Nusair
,
Can. J. Phys.
58
,
1200
(
1980
).
60.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
).
61.
J. P.
Perdew
,
Phys. Rev. B
33
,
8822
(
1986
).
62.
K.
Eichkorn
,
F.
Weigend
,
O.
Treutler
, and
R.
Ahlrichs
,
Theor. Chem. Acc.
97
,
119
(
1997
).
63.
F.
Weigend
and
R.
Ahlrichs
,
Phys. Chem. Chem. Phys.
7
,
3297
(
2005
).
64.
F.
Weigend
,
M.
Häser
,
H.
Patzelt
, and
R.
Ahlrichs
,
Chem. Phys. Lett.
294
,
143
(
1998
).
65.
K.
Eichkorn
,
O.
Treutler
,
H.
Ohm
,
M.
Häser
, and
R.
Ahlrichs
,
Chem. Phys. Lett.
240
,
283
(
1995
).
66.
M.
Sierka
,
A.
Hogekamp
, and
R.
Ahlrichs
,
J. Chem. Phys.
118
,
9136
(
2003
).
67.
TURBOMOLE version 6.5, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989–2007, TURBOMOLE GmbH, 2013, see http://www.turbomole.com.
68.
P. G.
Szalay
,
T.
Müller
,
G.
Gidofalvi
,
H.
Lischka
, and
R.
Shepard
,
Chem. Rev.
112
,
108
(
2012
) and references therein.
69.
S. R.
Langhoff
and
E. R.
Davidson
,
Int. J. Quantum Chem.
8
,
61
(
1974
).
70.
W.
Butscher
,
S.
Shih
,
R. J.
Buenker
, and
S. D.
Peyerimhoff
,
Chem. Phys. Lett.
52
,
457
(
1977
).
71.
C.
Angeli
,
R.
Cimiraglia
,
S.
Evangelisti
,
T.
Leininger
, and
J.-P.
Malrieu
,
J. Chem. Phys.
114
,
10252
(
2001
).
72.
C.
Angeli
,
R.
Cimiraglia
, and
J.-P.
Malrieu
,
Chem. Phys. Lett.
350
,
297
(
2001
).
73.
C.
Angeli
,
R.
Cimiraglia
, and
J.-P.
Malrieu
,
J. Chem. Phys.
117
,
9138
(
2002
).
74.
O.
Christiansen
,
H.
Koch
, and
P.
Jørgensen
,
Chem. Phys. Lett.
243
,
409
(
1995
).
75.
A.
Hellweg
,
S.
Grün
, and
C.
Hättig
,
Phys. Chem. Chem. Phys.
10
,
4119
(
2008
).
76.
I.
Schapiro
,
K.
Sivalingam
, and
F.
Neese
,
J. Chem. Theory Comput.
9
,
3567
(
2013
).
77.
P. H.
Dederichs
,
S.
Blugel
,
R.
Zeller
, and
H.
Akai
,
Phys. Rev. Lett.
53
,
2512
(
1984
).
78.
Q.
Wu
and
T.
Van Voorhis
,
Phys. Rev. A
72
,
024502
(
2005
).
79.
CPMD version 3.15.3, the CPMD consortium, MPI für Festkörperforschung, and the IBM Zurich Research Laboratory, 2013, see http://www.cpmd.org.
80.
F. L.
Hirshfeld
,
Theor. Chem. Acc.
44
,
129
(
1977
).
81.
P. O.
Löwdin
,
J. Chem. Phys.
18
,
365
(
1950
).
82.
G.
te Velde
,
F. M.
Bickelhaupt
,
E. J.
Baerends
,
C.
Fonseca Guerra
,
S. J. A.
van Gisbergen
,
J. G.
Snijders
, and
T.
Ziegler
,
J. Comput. Chem.
22
,
931
(
2001
).
83.
D.
Porezag
,
T.
Frauenheim
,
T.
Köhler
,
G.
Seifert
, and
R.
Kaschner
,
Phys. Rev. B
51
,
12947
(
1995
).
84.
G.
Seifert
,
D.
Porezag
, and
T.
Frauenheim
,
Int. J. Quantum Chem.
58
,
185
(
1996
).
85.
M.
Elstner
,
D.
Porezag
,
G.
Jungnickel
,
J.
Elsner
,
M.
Haugk
,
T.
Frauenheim
,
S.
Suhai
, and
G.
Seifert
,
Phys. Rev. B
58
,
7260
(
1998
).
86.
M.
Gaus
,
Q.
Cui
, and
M.
Elstner
,
J. Chem. Theory Comput.
7
,
931
(
2011
).
87.
G.
Seifert
and
J.-O.
Joswig
,
WIREs Comput. Mol. Sci.
2
,
456
(
2012
).
88.
M.
Gaus
,
Q.
Cui
, and
M.
Elstner
,
WIREs Comput. Mol. Sci.
4
,
49
(
2013
).
89.
M.
Rapacioli
and
F.
Spiegelman
,
Eur. Phys. J. D
52
,
55
(
2009
).
90.
M.
Rapacioli
,
F.
Spiegelman
,
A.
Scemama
, and
A.
Mirtschink
,
J. Chem. Theory Comput.
7
,
44
(
2011
).
91.
M.
Rapacioli
,
A.
Simon
,
L.
Dontot
, and
F.
Spiegelman
,
Phys. Status Solidi B
249
,
245
(
2012
).
92.
T. H.
Dunning
 Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
93.
D. E.
Woon
and
T. H.
Dunning
 Jr.
,
J. Chem. Phys.
98
,
1358
(
1993
).
94.
F.
Neese
,
J. Chem. Phys.
119
,
9428
(
2003
).
95.
S.
Grimme
,
L.
Goerigk
, and
R. F.
Fink
,
WIREs Comput. Mol. Sci.
2
,
886
(
2012
).
96.
F.
Weigend
,
A.
Kohn
, and
C.
Hattig
,
J. Chem. Phys
116
,
3175
(
2002
).
97.
F.
Neese
,
Comput. Mol. Sci.
2
,
73
(
2012
).
98.
C.
Hättig
and
F.
Weigend
,
J. Chem. Phys.
113
,
5154
(
2000
).
99.
E.
Papajak
,
H. R.
Leverentz
,
J.
Zheng
, and
D. G.
Truhlar
,
J. Chem. Theory Comput.
5
,
1197
(
2009
).
101.
K. L.
Schuchardt
,
B. T.
Didier
,
T.
Elsethagen
,
L.
Sun
,
V.
Gurumoorthi
,
J.
Chase
,
J.
Li
, and
T. L.
Windus
,
J. Chem. Inf. Model.
47
,
1045
(
2007
).
102.
A. J. H.
Wachters
,
J. Chem. Phys.
52
,
1033
(
1970
).
103.
N.
Troullier
and
J.
Martins
,
Phys. Rev. B
43
,
1993
(
1991
).
104.
T.
Niehaus
,
J. Mol. Struct.: THEOCHEM
541
,
185
(
2001
).
105.
C. L.
Janssen
and
I. M. B.
Nielsen
,
Chem. Phys. Lett.
290
,
423
(
1998
).
106.
L.
Goerigk
and
S.
Grimme
,
J. Chem. Phys.
132
,
184103
(
2010
).
107.
A.
Dreuw
and
M.
Head-Gordon
,
J. Am. Chem. Soc.
126
,
4007
(
2004
).
108.
A.
Bondi
,
J. Phys. Chem.
68
,
441
(
1964
).
109.
L.
Sebastian
,
G.
Weiser
, and
H.
Bässler
,
Chem. Phys.
61
,
125
(
1981
).
110.
L.
Sebastian
,
G.
Weiser
,
G.
Peter
, and
H.
Bässler
,
Chem. Phys.
75
,
103
(
1983
).
111.
Y. Y.
Yamashita
,
Sci. Technol. Adv. Mater.
10
,
024313
(
2009
).
112.
B.
Kaduk
,
T.
Kowalczyk
, and
T.
Van Voorhis
,
Chem. Rev.
112
,
321
(
2012
).
113.
M.
Renz
,
K.
Theilacker
,
C.
Lambert
, and
M.
Kaupp
,
J. Am. Chem. Soc.
131
,
16292
(
2009
).
114.
M.
Renz
,
M.
Kess
,
M.
Diedenhofen
,
A.
Klamt
, and
M.
Kaupp
,
J. Chem. Theory Comput.
8
,
4189
(
2012
).
115.
R. J.
Magyar
and
S.
Tretiak
,
J. Chem. Theory Comput.
3
,
976
(
2007
).
116.
J. J.
Eriksen
,
S. P. A.
Sauer
,
K. V.
Mikkelsen
,
O.
Christiansen
,
H. J. Aa.
Jensen
, and
J.
Kongsted
,
Mol. Phys.
111
,
1235
(
2013
).
117.
P. B.
Woiczikowski
,
T.
Kubař
,
R.
Gutíerrez
,
R. A.
Caetano
,
G.
Cuniberti
, and
M.
Elstner
,
J. Chem. Phys.
130
,
215104
(
2009
).
118.
T.
Kubař
,
R.
Gutiérrez
,
U.
Kleinekathöfer
,
G.
Cuniberti
, and
M.
Elstner
,
Phys. Status Solidi B
250
,
2277
(
2013
).
119.
F. C.
Grozema
,
S.
Tonzani
,
Y. A.
Berlin
,
G. C.
Schatz
,
L. D. A.
Siebbeles
, and
M. A.
Ratner
,
J. Am. Chem. Soc.
130
,
5157
(
2008
).
120.
E.
Runge
and
E. K. U.
Gross
,
Phys. Rev. Lett.
52
,
997
(
1984
).
121.
M.
Marques
and
E. K. U.
Gross
,
Annu. Rev. Phys. Chem.
55
,
427
(
2004
).
122.
T.
Kubař
and
M.
Elstner
,
Phys. Chem. Chem. Phys.
15
,
5794
(
2013
).
123.
A.
Savin
,
Theoretical and Computational Chemistry: Recent Developments and Applications of Modern Density Functional Theory
(
Elsevier Science B.V.
,
Amsterdam
,
1996
), Vol.
4
, p.
327
.
124.
A.
Troisi
,
A.
Nitzan
, and
M. A.
Ratner
,
J. Chem. Phys.
119
,
5782
(
2003
).
125.
J.
Blumberger
and
G.
Lamoureux
,
Mol. Phys.
106
,
1597
(
2008
).
126.
R.
Seidel
,
M.
Faubel
,
B.
Winter
, and
J.
Blumberger
,
J. Am. Chem. Soc.
131
,
16127
(
2009
).
127.
J.
Moens
,
R.
Seidel
,
P.
Geerlings
,
M.
Faubel
,
B.
Winter
, and
J.
Blumberger
,
J. Phys. Chem. B
114
,
9173
(
2010
).
128.
Y.
Tateyama
,
J.
Blumberger
,
T.
Ohno
, and
M.
Sprik
,
J. Chem. Phys.
126
,
204506
(
2007
).

Supplementary Material

You do not currently have access to this content.