Nanoparticles with different surface morphologies that straddle the interface between two immiscible liquids are studied via molecular dynamics simulations. The methodology employed allows us to compute the interfacial free energy at different angular orientations of the nanoparticle. Due to their atomistic nature, the studied nanoparticles present both microscale and macroscale geometrical features and cannot be accurately modeled as a perfectly smooth body (e.g., spheres and cylinders). Under certain physical conditions, microscale features can produce free energy barriers that are much larger than the thermal energy of the surrounding media. The presence of these energy barriers can effectively “lock” the particle at specific angular orientations with respect to the liquid-liquid interface. This work provides new insights on the rotational dynamics of Brownian particles at liquid interfaces and suggests possible strategies to exploit the effects of microscale features with given geometric characteristics.

1.
F.
Bresme
and
M.
Oettel
,
J. Phys. Condens. Matter
19
,
413101
(
2007
).
2.
S. C.
Glotzer
and
M. J.
Solomon
,
Nature Mater.
6
,
557
(
2007
).
3.
Y.
Xia
,
X.
Xia
,
Y.
Wang
and
S.
Xie
,
MRS Bull.
38
,
335
(
2013
).
4.
W.
Ramsden
,
Proc. R. Soc. London
72
,
156
(
1903
).
5.
S.
Pickering
,
J. Chem. Soc.
91
,
2001
(
1907
).
6.
B. A.
Grzybowski
,
C. E.
Wilmer
,
J.
Kim
,
K. P.
Browne
, and
K. J. M.
Bishop
,
Soft Matter
5
,
1110
(
2009
).
7.
G. M.
Whitesides
and
B.
Grzybowski
,
Science
295
,
2418
(
2002
).
8.
P. A.
Kralchevsky
and
K.
Nagayama
,
Particles at Fluid Interfaces and Membranes
(
Elsevier
,
Amsterdam
,
2001
).
9.
P.
Pieranski
,
Phys. Rev. Lett.
45
,
569
(
1980
).
10.
D. M.
Kaz
,
R.
McGorty
,
M.
Mani
,
M. P.
Brenner
, and
V. N.
Manoharan
,
Nature Mater.
11
,
138
(
2012
).
11.
C. E.
Colosqui
,
J. F.
Morris
, and
J.
Koplik
,
Phys. Rev. Lett.
111
,
028302
(
2013
).
13.
P.
Hanggi
,
J. Stat. Phys.
42
,
105
(
1986
).
14.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulations
(
Academic
,
London
,
2002
).
15.
J.
Koplik
and
J. R.
Banavar
,
Science
257
,
1664
(
1992
).
16.
J.
Koplik
and
J. R.
Banavar
,
Phys. Fluids A
5
,
521
(
1993
).
17.
J.
Koplik
and
J. R.
Banavar
,
Phys. Rev. Lett.
96
,
044505
(
2006
).
18.
T. M.
Ruhland
,
A. H.
Groeschel
,
N.
Ballard
,
T. S.
Skelhon
,
A.
Walther
,
A. H. E.
Mueller
, and
S. A. F.
Bon
,
Langmuir
29
,
1388
(
2013
).
19.
P. A.
Fernandes
,
M.
Cordeiro
, and
J.
Gomes
,
J. Phys. Chem. B
103
,
8930
(
1999
).
20.
S.
Razavi
,
J.
Koplik
, and
I.
Kretzschmar
,
Soft Matter
9
,
4585
(
2013
).
21.
S.
Crossley
,
J.
Faria
,
M.
Shen
, and
D. E.
Resasco
,
Science
327
,
68
(
2010
).
22.
A.
Kumar
,
B. J.
Park
,
F.
Tu
, and
D.
Lee
,
Soft Matter
9
,
6604
(
2013
).
You do not currently have access to this content.