We study mixed brushes under shear flow by molecular dynamics simulation with an explicit solvent. The primary brush is formed by chemically grafting polymers to a solid substrate, the secondary brush is comprised of shorter, physically end-adsorbed molecules that can laterally diffuse. By virtue of the immobility of the grafted end-points of the primary brush, its individual macromolecules perform a cyclic motion. If there is a well defined solvent-brush interface, this cyclic motion of the primary brush molecules will collectively result in the reversal of the flow inside of the primary brush. This backflow, linear in the shear rate, gives rise to the transport of the shorter, physically end-adsorbed molecules in the opposite direction of the solvent flow. We discuss which conditions are necessary to observe this counter-intuitive phenomenon. Comparing Poiseuille and Couette flow we demonstrate that the magnitude of the local shear rate at the brush-liquid interface dictates the cyclic motion and concomitant inversion of transport but that these universal effects are independent of the type of driving the flow.

1.
K.
Binder
,
T.
Kreer
, and
A.
Milchev
,
Soft Matter
7
,
7159
(
2011
).
2.
H. C.
Brinkman
,
Appl. Sci. Res., Sect. A
1
,
27
(
1949
).
3.
S. T.
Milner
,
Macromolecules
24
,
3704
(
1991
).
4.
D. I.
Dimitrov
,
A.
Milchev
, and
K.
Binder
,
Macromol. Theory Simul.
17
,
313
(
2008
).
5.
L.
Lanotte
,
S.
Guido
,
C.
Misbah
,
P.
Peyla
, and
L.
Bureau
,
Langmuir
28
,
13758
(
2012
).
6.
M.
Müller
and
C.
Pastorino
,
Europhys. Lett.
81
,
28002
(
2008
).
7.
D. E.
Smith
,
H. P.
Babcock
, and
S.
Chu
,
Science
283
,
1724
(
1999
).
8.
S.
Gerashchenko
and
V.
Steinberg
,
Phys. Rev. Lett.
96
,
038304
(
2006
).
9.
P. S.
Doyle
,
B.
Ladoux
, and
J. L.
Viovy
,
Phys. Rev. Lett.
84
,
4769
(
2000
).
10.
R. G.
Winkler
,
Phys. Rev. Lett.
97
,
128301
(
2006
).
11.
R.
Delgado-Buscalioni
,
Phys. Rev. Lett.
96
,
088303
(
2006
).
12.
C.-C.
Huang
,
G.
Sutmann
,
G.
Gompper
, and
R. G.
Winkler
,
Europhys. Lett.
93
,
54004
(
2011
).
13.
Y.
Zhang
,
A.
Donev
,
T.
Weisgraber
,
B. J.
Alder
,
M. D.
Graham
, and
J. J.
de Pablo
,
J. Chem. Phys.
130
,
234902
(
2009
).
14.
C.
Pastorino
,
K.
Binder
, and
M.
Müller
,
Macromolecules
42
,
401
(
2009
).
15.
M.
Deng
,
X.
Li
,
H.
Liang
,
B.
Caswell
, and
G. E.
Karniadakis
,
J. Fluid Mech.
711
,
192
(
2012
).
16.
We envision that molecules with a physisorbed group along the molecular contour will exhibit a similar behavior. This strategy may serve as a platform for inversely transporting other molecules that strongly bind to the physisorbed brush.
17.
G. S.
Grest
and
K.
Kremer
,
Phys. Rev. A
33
,
3628
(
1986
).
18.
R. D.
Groot
and
P. B.
Warren
,
J. Chem. Phys.
107
,
4423
(
1997
).
19.
P.
Español
and
P.
Warren
,
Europhys. Lett.
30
,
191
(
1995
).
20.
T.
Soddemann
,
G. K.
Auernhammer
,
H.
Guo
,
B.
Dünweg
, and
K.
Kremer
,
Eur. Phys. J. E
13
,
141
(
2004
).
21.
C.
Pastorino
,
T.
Kreer
,
M.
Müller
, and
K.
Binder
,
Phys. Rev. E
76
,
026706
(
2007
).
22.
C.
Pastorino
,
K.
Binder
,
T.
Kreer
, and
M.
Müller
,
J. Chem. Phys.
124
,
064902
(
2006
).
23.
M.
Doi
and
S. F.
Edwards
,
The Theory of Polymer Dynamics
(
Oxford
,
2001
).
24.
M. G.
Saphiannikova
,
V. A.
Pryamitsyn
, and
T.
Cosgrove
,
Macromolecules
31
,
6662
(
1998
).
25.
M. G.
Saphiannikova
,
V. A.
Pryamitsyn
, and
T. M.
Birshtein
,
Macromolecules
33
,
2740
(
2000
).
26.
Experimental and simulation studies of individual, grafted molecules29,30 observed a Wi−1/3-scaling for the chain dimensions. We have verified, however, that the dependence of the molecular extension on the Weissenberg number in our brush is significantly weaker than for isolated chains.
$R_{{\protect \rm e}}$
Re
varies only by a factor of 2 between Wi = 0 (equilibrium) and our highest shear rate, Wi = 615. We attribute this difference to the screening of the flow inside the brush.
27.
Within the error bars the simulation data would also be compatible with a Wi2/3 for larger shear rates as suggested by the momentum profiles of the primary brush in Fig. 4.
28.
Note that the crossover time t* will be independent of the molecular weight in the regime where the diffusion of the secondary brush is Rouse-like and
$D_{2}\sim \protect \frac{1}{N_{2}}$
D21N2
and
$R_{{\protect \rm e},2}^{2}\sim N_{2}$
Re,22N2
.
29.
B.
Ladoux
and
P. S.
Doyle
,
Europhys. Lett.
52
,
511
(
2000
).
30.
S.
Litvinov
,
X. Y.
Hu
, and
N. A.
Adams
,
J. Phys.: Condens. Matter
23
,
184118
(
2011
).
You do not currently have access to this content.