When ice grows, the growth rates are unequal along different growth directions and some layers contain planar defective regions. With the aim of helping to understand these phenomena, we report the molecular dynamics simulations of ice growth on the basal and prismatic faces of initial hexagonal ice, using the TIP5P-E water model. By presenting the time evolution of the two-dimensional density profiles of water molecules in each layer and the kinetics of layer formation during ice growth at the temperature of 11 K supercooling, we show that two forms of ice arrangements, hexagonal and cubic, develop competitively within the same ice layer on the basal face, whereas such in-layer stacking-competition is insignificant on the prismatic face. It is shown that, on the basal face, the occurrence of significant in-layer stacking competition in one of the layers significantly delays the layer formation in several overlying layers and explains the overall delay in ice growth on the basal face compared to that on the prismatic face. In addition, it is observed that large planar defects form on the basal face, as a consequence of the long-lasting in-layer stacking competition when the overlying layer grows rapidly.

1.
T. C.
Hansen
,
M. M.
Koza
, and
W. F.
Kuhs
,
J. Phys. Condens. Matter
20
,
285104
(
2008
).
2.
T. L.
Malkin
,
B. J.
Murray
,
A. V.
Brukhno
,
J.
Anwar
, and
C. G.
Salzmann
,
Proc. Natl. Acad. Sci. U.S.A.
109
,
1041
1045
(
2012
).
3.
W. F.
Kuhs
,
C.
Sippel
,
A.
Falenty
, and
T. C.
Hansen
,
Proc. Natl. Acad. Sci. U.S.A.
109
,
21259
21264
(
2012
).
4.
T.
Takahashi
and
T.
Kobayashi
,
J. Cryst. Growth
64
,
593
603
(
1983
).
5.
P.
Pirzadeh
and
P. G.
Kusalik
,
J. Am. Chem. Soc.
133
,
704
707
(
2011
).
6.
T.
Li
,
D.
Donadio
,
G.
Russo
, and
G.
Galli
,
Phys. Chem. Chem. Phys.
13
,
19807
19813
(
2011
).
7.
E. B.
Moore
and
V.
Molinero
,
Phys. Chem. Chem. Phys.
13
,
20008
20016
(
2011
).
8.
M.
Seo
,
E.
Jang
,
K.
Kim
,
S.
Choi
, and
J. S.
Kim
,
J. Chem. Phys.
137
,
154503
(
2012
).
9.
P. V.
Hobbs
,
Ice Physics
(
Oxford University Press
,
Oxford
,
1974
).
10.
W. C.
Macklin
and
B. F.
Ryan
,
Philos. Mag.
17
,
83
87
(
1968
).
11.
K. A.
Jackson
,
D. R.
Uhlmann
, and
J. D.
Hunt
,
J. Cryst. Growth
1
,
1
36
(
1967
).
12.
H.
Nada
and
Y.
Furukawa
,
J. Cryst. Growth
283
,
242
(
2005
).
13.
M. A.
Carignano
,
P. B.
Shepson
, and
I.
Szleifer
,
Mol. Phys.
103
,
2957
(
2005
).
14.
D.
Rozmanov
and
P. G.
Kusalik
,
J. Chem. Phys.
137
,
094702
(
2012
).
15.
M. A.
Carignano
,
J. Phys. Chem. C
111
,
501
504
(
2007
).
16.
H.
Nada
,
Cryst. Growth Des.
11
,
3130
3136
(
2011
).
17.
J. A.
Hayward
and
J. R.
Reimers
,
J. Chem. Phys.
106
,
1518
(
1997
).
18.
A.
Rahman
and
F. H.
Stillinger
,
J. Chem. Phys.
57
,
4009
(
1972
).
19.
G. T.
Barkema
and
J.
de Boer
,
J. Chem. Phys.
99
,
2059
(
1993
).
20.
J. S.
Kim
and
A.
Yethiraj
,
J. Chem. Phys.
129
,
124504
(
2008
).
21.
B.
Hess
,
C.
Kutzner
,
D.
van der Spoel
, and
E.
Lindahl
,
J. Chem. Theory Comput.
4
,
435
447
(
2008
).
22.
S. W.
Rick
,
J. Chem. Phys.
120
,
6085
6093
(
2004
).
23.
M. W.
Mahoney
and
W. L.
Jorgensen
,
J. Chem. Phys.
112
,
8910
(
2000
).
24.
C.
Vega
,
E.
Sanz
, and
J. L. F.
Abascal
,
J. Chem. Phys.
122
,
114507
(
2005
).
25.
R. G.
Fernández
,
J. L. F.
Abascal
, and
C.
Vega
,
J. Chem. Phys.
124
,
144506
(
2006
).
26.
R. G.
Pereyra
and
M.
Carignano
,
J. Phys. Chem. C
113
,
12699
12705
(
2009
).
27.
D. C.
Malaspina
,
A. J.
Bermúdez di Lorenzo
,
R. G.
Pereyra
,
I.
Szleifer
, and
M. A.
Carignano
,
J. Chem. Phys.
139
,
024506
(
2013
).
28.
W.
Humphrey
,
A.
Dalke
, and
K.
Schulten
,
J. Mol. Graphics
14
,
33
38
(
1996
).
29.
S.
Liang
and
P. G.
Kusalik
,
Chem. Phys. Lett.
494
,
123
133
(
2010
).
30.
H.
Nada
,
J. P.
van der Eerden
, and
Y.
Furukawa
,
J. Cryst. Growth
266
,
297
(
2004
).
31.
K.
Thürmer
and
N. C.
Bartelt
,
Phys. Rev. B
77
,
195425
(
2008
).
32.
S.
Nie
,
N. C.
Bartelt
, and
K.
Thürmer
,
Phys. Rev. B
84
,
035420
(
2011
).
33.
V. C.
Weiss
,
M.
Rullich
,
C.
Köhler
, and
T.
Frauenheim
,
J. Chem. Phys.
135
,
034701
(
2011
).
34.
J. E.
Shilling
,
M. A.
Tolbert
,
O. B.
Toon
,
E. J.
Jensen
, and
B. J.
Murray
,
Geophys. Res. Lett.
33
,
L17801
, doi: (
2006
).
35.
B. J.
Murray
,
S. L.
Broadley
,
T. W.
Wilson
,
S. J.
Bull
, and
R. H.
Wills
,
Phys. Chem. Chem. Phys.
12
,
10380
10387
(
2010
).
36.
H.
Tanaka
,
J. Chem. Phys.
108
,
4887
4893
(
1998
).
37.
B. J.
Murray
and
A. K.
Bertram
,
Phys. Chem. Chem. Phys.
8
,
186
192
(
2006
).
38.
G. P.
Johari
,
Philos. Mag. B
78
,
375
383
(
1998
).
39.
G. P.
Johari
,
J. Chem. Phys.
122
,
194504
(
2005
).
40.
D.
Hull
and
D. J.
Bacon
,
Introduction to Dislocations
, 5th ed. (
Butterworth-Heinemann
,
Oxford
,
2011
).
41.
S. M.
Hughes
and
A. P.
Alivisatos
,
Nano Lett.
13
,
106
110
(
2013
).
42.
C.-C.
Chen
,
C.
Zhu
,
E. R.
White
,
C.-Y.
Chiu
,
M. C.
Scott
,
B. C.
Regan
,
L. D.
Marks
,
Y.
Huang
, and
J.
Miao
,
Nature (London)
496
,
74
77
(
2013
).
43.
N. V.
Krainyukova
,
R. E.
Boltnev
,
E. P.
Bernard
,
V. V.
Khmelenko
,
D. M.
Lee
, and
V.
Kiryukhin
,
Phys. Rev. Lett.
109
,
245505
(
2012
).
You do not currently have access to this content.