We prove that according to Molecular Dynamics (MD) simulations of liquid mixtures of Lennard-Jones (L-J) particles, there is no third order phase transition in the supercritical regime beyond Andrew's critical point. This result is in open contrast with recent theoretical studies and experiments which instead suggest not only its existence but also its universality regarding the chemical nature of the fluid. We argue that our results are solid enough to go beyond the limitations of MD and the generic character of L-J models, thus suggesting a rather smooth liquid-vapor thermodynamic behavior of fluids in supercritical regime.
REFERENCES
1.
2.
T.
Ma
and S.
Wang
, “Third-order gas-liquid phase transition and the nature of Andrews critical point
,” AIP Adv.
1
(4
), 042101
(2011
).3.
4.
K.
Nishikawa
and I.
Tanaka
, “Correlation lengths and density fluctuations in supercritical states of carbon dioxide
,” Chem. Phys. Lett.
244
(1–2
), 149
–152
(1995
).5.
K.
Nishikawa
and T.
Morita
, “Fluid behavior at supercritical states studied by small-angle x-ray scattering
,” J. Supercrit. Fluids
13
(1–3
), 143
–148
(1998
).6.
T.
Morita
, K.
Kusano
, H.
Ochiai
, K. I.
Saitow
, and K.
Nishikawa
, “Study of inhomogeneity of supercritical water by small-angle x-ray scattering
,” J. Chem. Phys.
112
, 4203
–4211
(2000
).7.
K.
Nishikawa
and T.
Morita
, “Inhomogeneity of molecular distribution in supercritical fluids
,” Chem. Phys. Lett.
316
(3–4
), 238
–242
(2000
).8.
K.
Nishikawa
, K.
Kusano
, A. A.
Arai
, and T.
Morita
, “Density fluctuation of a van der Waals fluid in supercritical state
,” J. Chem. Phys.
118
, 1341
(2003
).9.
A. A.
Arai
, T.
Morita
, and K.
Nishikawa
, “Analysis to obtain precise density fluctuation of supercritical fluids by small-angle x-ray scattering
,” Chem. Phys.
310
(1–3
), 123
–128
(2005
).10.
T.
Sato
, M.
Sugiyama
, K.
Itoh
, K.
Mori
, T.
Fukunaga
, M.
Misawa
, T.
Otomo
, and S.
Takata
, “Structural difference between liquidlike and gaslike phases in supercritical fluid
,” Phys. Rev. E
78
(5
), 051503
(2008
).11.
Y.
Koga
, P.
Westh
, Y.
Moriya
, K.
Kawasaki
, and T.
Atake
, “High temperature end of the so-called ‘Koga-Line': Anomalies in temperature derivatives of heat capacities
,” J. Phys. Chem. B
113
(17
), 5885
–5890
(2009
).12.
A.
Lotfi
, J.
Vrabec
, and J.
Fischer
, “Vapour liquid equilibria of the Lennard-Jones fluid from the NPT plus test particle method
,” Mol. Phys.
76
(6
), 1319
–1333
(1992
).13.
B.
Smit
, “Phase diagrams of Lennard-Jones fluids
,” J. Chem. Phys.
96
(11
), 8639
(1992
).14.
A. Z.
Panagiotopoulos
, “Molecular simulation of phase coexistence: Finite-size effects and determination of critical parameters for two-and three-dimensional Lennard-Jones fluids
,” Int. J. Thermophys.
15
(6
), 1057
–1072
(1994
).15.
J. J.
Potoff
and A. Z.
Panagiotopoulos
, “Critical point and phase behavior of the pure fluid and a Lennard-Jones mixture
,” J. Chem. Phys.
109
, 10914
(1998
).16.
J.
Pérez-Pellitero
, P.
Ungerer
, G.
Orkoulas
, and A. D.
Mackie
, “Critical point estimation of the Lennard-Jones pure fluid and binary mixtures
,” J. Chem. Phys.
125
, 054515
(2006
).17.
H.
Sakuma
, M.
Ichiki
, K.
Kawamura
, and K.
Fuji-ta
, “Prediction of physical properties of water under extremely supercritical conditions: A molecular dynamics study
,” J. Chem. Phys.
138
, 134506
(2013
).18.
E. A.
Orabi
and G.
Lamoureux
, “Polarizable interaction model for liquid, supercritical, and aqueous ammonia
,” J. Chem. Theory Comput.
9
(4
), 2035
–2051
(2013
).19.
C.
Vega
and J. L. F.
Abascal
, “Simulating water with rigid non-polarizable models: A general perspective
,” Phys. Chem. Chem. Phys.
13
(44
), 19663
–19688
(2011
).20.
H.
Wang
, L. Delle
Site
, and P.
Zhang
, “On the existence of a third-order phase transition beyond the Andrews critical point: A molecular dynamics study
,” J. Chem. Phys.
135
(22
), 224506
(2011
).21.
S.
Nosé
, “A molecular dynamics method for simulations in the canonical ensemble
,” Mol. Phys.
52
(2
), 255
–268
(1984
).22.
W. G.
Hoover
, “Canonical dynamics: Equilibrium phase-space distributions
,” Phys. Rev. A
31
(3
), 1695
–1697
(1985
).23.
M.
Parrinello
and A.
Rahman
, “Crystal structure and pair potentials: A molecular-dynamics study
,” Phys. Rev. Lett.
45
(14
), 1196
–1199
(1980
).24.
M.
Parrinello
and A.
Rahman
, “Polymorphic transitions in single crystals: A new molecular dynamics method
,” J. Appl. Phys.
52
, 7182
(1981
).© 2014 AIP Publishing LLC.
2014
AIP Publishing LLC
You do not currently have access to this content.