We prove that according to Molecular Dynamics (MD) simulations of liquid mixtures of Lennard-Jones (L-J) particles, there is no third order phase transition in the supercritical regime beyond Andrew's critical point. This result is in open contrast with recent theoretical studies and experiments which instead suggest not only its existence but also its universality regarding the chemical nature of the fluid. We argue that our results are solid enough to go beyond the limitations of MD and the generic character of L-J models, thus suggesting a rather smooth liquid-vapor thermodynamic behavior of fluids in supercritical regime.

1.
T.
Andrews
,
Proc. R. Soc. London
24
,
455
463
(
1827
).
2.
T.
Ma
and
S.
Wang
, “
Third-order gas-liquid phase transition and the nature of Andrews critical point
,”
AIP Adv.
1
(
4
),
042101
(
2011
).
3.
P.
York
, “
Supercritical fluids: Realising potential
,”
Chem. World
2
(
2
),
50
(
2005
).
4.
K.
Nishikawa
and
I.
Tanaka
, “
Correlation lengths and density fluctuations in supercritical states of carbon dioxide
,”
Chem. Phys. Lett.
244
(
1–2
),
149
152
(
1995
).
5.
K.
Nishikawa
and
T.
Morita
, “
Fluid behavior at supercritical states studied by small-angle x-ray scattering
,”
J. Supercrit. Fluids
13
(
1–3
),
143
148
(
1998
).
6.
T.
Morita
,
K.
Kusano
,
H.
Ochiai
,
K. I.
Saitow
, and
K.
Nishikawa
, “
Study of inhomogeneity of supercritical water by small-angle x-ray scattering
,”
J. Chem. Phys.
112
,
4203
4211
(
2000
).
7.
K.
Nishikawa
and
T.
Morita
, “
Inhomogeneity of molecular distribution in supercritical fluids
,”
Chem. Phys. Lett.
316
(
3–4
),
238
242
(
2000
).
8.
K.
Nishikawa
,
K.
Kusano
,
A. A.
Arai
, and
T.
Morita
, “
Density fluctuation of a van der Waals fluid in supercritical state
,”
J. Chem. Phys.
118
,
1341
(
2003
).
9.
A. A.
Arai
,
T.
Morita
, and
K.
Nishikawa
, “
Analysis to obtain precise density fluctuation of supercritical fluids by small-angle x-ray scattering
,”
Chem. Phys.
310
(
1–3
),
123
128
(
2005
).
10.
T.
Sato
,
M.
Sugiyama
,
K.
Itoh
,
K.
Mori
,
T.
Fukunaga
,
M.
Misawa
,
T.
Otomo
, and
S.
Takata
, “
Structural difference between liquidlike and gaslike phases in supercritical fluid
,”
Phys. Rev. E
78
(
5
),
051503
(
2008
).
11.
Y.
Koga
,
P.
Westh
,
Y.
Moriya
,
K.
Kawasaki
, and
T.
Atake
, “
High temperature end of the so-called ‘Koga-Line': Anomalies in temperature derivatives of heat capacities
,”
J. Phys. Chem. B
113
(
17
),
5885
5890
(
2009
).
12.
A.
Lotfi
,
J.
Vrabec
, and
J.
Fischer
, “
Vapour liquid equilibria of the Lennard-Jones fluid from the NPT plus test particle method
,”
Mol. Phys.
76
(
6
),
1319
1333
(
1992
).
13.
B.
Smit
, “
Phase diagrams of Lennard-Jones fluids
,”
J. Chem. Phys.
96
(
11
),
8639
(
1992
).
14.
A. Z.
Panagiotopoulos
, “
Molecular simulation of phase coexistence: Finite-size effects and determination of critical parameters for two-and three-dimensional Lennard-Jones fluids
,”
Int. J. Thermophys.
15
(
6
),
1057
1072
(
1994
).
15.
J. J.
Potoff
and
A. Z.
Panagiotopoulos
, “
Critical point and phase behavior of the pure fluid and a Lennard-Jones mixture
,”
J. Chem. Phys.
109
,
10914
(
1998
).
16.
J.
Pérez-Pellitero
,
P.
Ungerer
,
G.
Orkoulas
, and
A. D.
Mackie
, “
Critical point estimation of the Lennard-Jones pure fluid and binary mixtures
,”
J. Chem. Phys.
125
,
054515
(
2006
).
17.
H.
Sakuma
,
M.
Ichiki
,
K.
Kawamura
, and
K.
Fuji-ta
, “
Prediction of physical properties of water under extremely supercritical conditions: A molecular dynamics study
,”
J. Chem. Phys.
138
,
134506
(
2013
).
18.
E. A.
Orabi
and
G.
Lamoureux
, “
Polarizable interaction model for liquid, supercritical, and aqueous ammonia
,”
J. Chem. Theory Comput.
9
(
4
),
2035
2051
(
2013
).
19.
C.
Vega
and
J. L. F.
Abascal
, “
Simulating water with rigid non-polarizable models: A general perspective
,”
Phys. Chem. Chem. Phys.
13
(
44
),
19663
19688
(
2011
).
20.
H.
Wang
,
L. Delle
Site
, and
P.
Zhang
, “
On the existence of a third-order phase transition beyond the Andrews critical point: A molecular dynamics study
,”
J. Chem. Phys.
135
(
22
),
224506
(
2011
).
21.
S.
Nosé
, “
A molecular dynamics method for simulations in the canonical ensemble
,”
Mol. Phys.
52
(
2
),
255
268
(
1984
).
22.
W. G.
Hoover
, “
Canonical dynamics: Equilibrium phase-space distributions
,”
Phys. Rev. A
31
(
3
),
1695
1697
(
1985
).
23.
M.
Parrinello
and
A.
Rahman
, “
Crystal structure and pair potentials: A molecular-dynamics study
,”
Phys. Rev. Lett.
45
(
14
),
1196
1199
(
1980
).
24.
M.
Parrinello
and
A.
Rahman
, “
Polymorphic transitions in single crystals: A new molecular dynamics method
,”
J. Appl. Phys.
52
,
7182
(
1981
).
You do not currently have access to this content.