Outlines are sketched for a general statistical mechanical theory of transport processes; e.g., diffusion, heat transfer, fluid flow, and response to time‐dependent external force fields. In the case of gases the theory leads to the Maxwell‐Boltzmann integro‐differential equation of transport. In the case of liquids and solutions, it leads to a generalized theory of Brownian motion, in which the friction constant is explicitly related to the intermolecular forces acting in the system. Specific applications are postponed for treatment in later articles.

1.
See Gladstone, Laidler, and Eyring, Theory of Rate Processes (McGraw‐Hill Book Company, Inc., New York, 1941).
2.
See Chapman and Cowling, The Mathematical Theory of Non‐Uniform Gases (Cambridge University Press, New York, 1939).
3.
Einstein
,
Ann. d. Physik
17
,
549
(
1905
);
Einstein
,
19
,
371
(
1906
).
4.
See
L.
Onsager
and
R. T.
Fuoss
,
J. Phys. Chem.
36
,
2689
(
1932
).
5.
S.
Chandrasekar
,
Rev. Mod. Phys.
15
,
1
89
(
1943
).
6.
L.
Onsager
,
Phys. Rev.
37
,
405
(
1931
);
L.
Onsager
,
38
,
2265
(
1931
).,
Phys. Rev.
7.
von Neumann
,
Proc. Nat. Acad. Sci.
18
,
70
(
1932
);
Koopman
and
von Neumann
,
Proc. Nat. Acad. Sci.
18
,
255
(
1932
).
8.
S.
Chandrasekar
,
Rev. Mod. Phys.
15
,
1
89
(
1943
), Eq. (249).
9.
See
von Neumann
,
Proc. Nat. Acad. Sci.
18
(
1932
).
Also Quantenmechanik (Verlagsbuchhandlung Julius Springer, Berlin, 1932);
Stone, Linear Transformations in Hilbert Space (American Mathematical Society Publication, 1932).
This content is only available via PDF.
You do not currently have access to this content.