We developed a new coarse-grained (CG) model for water to study nucleation of droplets from the vapor phase. The resulting potential has a more flexible functional form and a longer range cutoff compared to other CG potentials available for water. This allowed us to extend the range of applicability of coarse-grained techniques to nucleation phenomena. By improving the description of the interactions between water molecules in the gas phase, we obtained CG model that gives similar results than the all-atom (AA) TIP4P model but at a lower computational cost. In this work we present the validation of the potential and its application to the study of nucleation of water droplets from the supersaturated vapor phase via molecular-dynamics simulations. The computed nucleation rates at T = 320 K and 350 K at different supersaturations, ranging from 5 to 15, compare very well with AA TIP4P simulations and show the right dependence on the temperature compared with available experimental data. To help comparison with the experiments, we explored in detail the different ways to control the temperature and the effects on nucleation.

1.
D.
Becker
and
W.
Döring
,
Ann. Phys.
416
,
719
(
1935
).
2.
M.
Volmer
and
A.
Weber
,
Z. Phys. Chem.
119
,
277
(
1925
).
3.
J.
Merikanto
,
E.
Zapadinsky
,
A.
Lauri
, and
H.
Vehkamäki
,
Phys. Rev. Lett.
98
,
145702
(
2007
).
4.
T.
Kurtén
and
H.
Vehkamäki
,
Adv. Quantum Chem.
55
,
407
(
2008
).
5.
H.
Vehkamäki
,
Classical Nucleation Theory in Multicomponent Systems
(
Springer-Verlag Heidelberg
,
Berlin
,
2006
).
6.
J. D.
McCoy
and
J. G.
Curro
,
Macromolecules
31
,
9362
(
1998
).
8.
H.
Fukunaga
,
J.
Takimoto
, and
M.
Doi
,
J. Chem. Phys.
116
,
8183
(
2002
).
9.
10.
J. T.
Chayes
and
L.
Chayes
,
J. Stat. Phys.
36
,
471
(
1984
).
11.
M. E.
Johnson
,
T.
Head-Gordon
, and
A. A.
Louis
,
J. Chem. Phys.
126
,
144509
(
2007
).
12.
H.
Wang
,
C.
Junghans
, and
K.
Kremer
,
Eur. Phys. J. E
28
,
221
(
2009
).
13.
K. R.
Hadley
and
C.
McCabe
,
Mol. Simul.
38
,
671
(
2012
).
14.
C.
Dias
,
T.
Ala-Nissila
,
M.
Grant
, and
M.
Karttunen
,
J. Chem. Phys.
131
,
054505
(
2009
).
15.
V.
Molinero
and
E. B.
Moore
,
J. Phys. Chem. B
113
,
4008
(
2009
).
16.
L.
Larini
,
L.
Lu
, and
G. A.
Voth
,
J. Chem. Phys.
132
,
164107
(
2010
).
17.
A.
Das
and
H. C.
Andersen
,
J. Chem. Phys.
136
,
194114
(
2012
).
18.
K. R.
Hadley
and
C.
McCabe
,
J. Phys. Chem. B
114
,
4590
(
2010
).
19.
B.
van Hoof
,
A. J.
Markvoort
,
R. A.
van Santen
, and
P. A. J.
Hilbers
,
J. Phys. Chem. B
115
,
10001
(
2011
).
20.
S. J.
Marrink
,
A. H.
de Vries
, and
A. E.
Mark
,
J. Phys. Chem. B
108
,
750
(
2004
).
21.
M. S.
Shell
,
J. Chem. Phys.
129
,
144108
(
2008
).
22.
T.
Murtola
,
A.
Bunker
,
I.
Vattulainen
,
M.
Deserno
, and
M.
Karttunen
,
Phys. Chem. Chem. Phys.
11
,
1869
(
2009
).
23.
V.
Rühle
,
C.
Junghans
,
A.
Lukyanov
,
K.
Kremer
, and
D.
Andrienko
,
J. Chem. Theory Comput.
5
,
3211
(
2009
).
24.
S.
Izvekov
and
G. A.
Voth
,
J. Chem. Phys.
125
,
151101
(
2006
).
25.
A.
Eriksson
,
M. N.
Jacobi
,
J.
Nyström
, and
K.
Tunstrϕm
,
J. Chem. Phys.
129
,
024106
(
2008
).
26.
K.
Yasuoka
and
M.
Matsumoto
,
J. Chem. Phys.
109
,
8463
(
1998
).
27.
J.
Merikanto
,
H.
Vehkämaki
, and
E.
Zapadinski
,
J. Chem. Phys.
121
,
914
(
2004
).
28.
S.
Plimpton
,
J. Comput. Phys.
117
,
1
(
1995
);
29.
W. L.
Jorgensen
,
J. D.
Madura
,
R. W.
Impey
, and
M. L.
Klein
,
J. Chem. Phys.
79
,
926
(
1983
).
30.
B.
Chen
,
J. I.
Siepmann
, and
M. L.
Klein
,
J. Phys. Chem. A
109
,
1137
(
2005
).
31.
See supplementary material at http://dx.doi.org/10.1063/1.4819136 for computational details related to the validation of the coarse-grained potential; effects of the thermostat and carrier gas on the nucleation; and tabulated radial CG potential of Fig. 2.
32.
D.
Reith
,
M.
Pütz
, and
F.
Müller-Plathe
,
J. Comput. Chem.
24
,
1624
(
2003
).
33.
F. H.
Stillinger
and
T. A.
Weber
,
Phys. Rev. B
31
,
5262
(
1985
).
34.
H. W.
Horn
,
W. C.
Swope
, and
J. W.
Pitera
,
J. Chem. Phys.
123
,
194504
(
2005
).
35.
M. R.
Shirts
,
J. W.
Pitera
,
W. C.
Swope
, and
V. S.
Pande
,
J. Chem. Phys.
119
,
5740
(
2003
).
36.
D. R.
Lide
,
CRC Handbook of Chemistry and Physics
, 84th ed. (
CRC
,
2003
).
37.
W.
Wagner
and
A.
Pruss
,
J. Phys. Chem. Ref. Data
31
,
387
(
2002
).
38.
Y.
Sugita
and
Y.
Okamoto
,
Chem. Phys. Lett.
314
,
141
(
1999
).
39.
T.
Strässle
,
A. M.
Saitta
,
Y.
Le Godec
,
G.
Hamel
,
S.
Klotz
,
J. S.
Loveday
, and
R. J.
Nelmes
,
Phys. Rev. Lett.
96
,
067801
(
2006
).
40.
P. E.
Wagner
, Aerosol Research III Wien 209 (
1981
); “
Pure Component Properties
” (Queriable database). Chemical Engineering Research Information Center. http://www.cheric.org/research/kdb/hcprop/cmpsrch.php.
41.
J.
Wedekind
,
R.
Strey
, and
D.
Reguera
,
J. Chem. Phys.
126
,
134103
(
2007
).
42.
J. F.
Lawless
,
Statistical Models and Methods for Lifetime Data
, 2nd ed. (
John Wiley and Sons
,
Hoboken
,
2003
).
43.
J.
Wedekind
,
D.
Reguera
, and
R.
Strey
,
J. Chem. Phys.
127
,
064501
(
2007
).
44.
45.
B. N.
Hale
, “
Computer simulations, nucleation rate predictions and scaling
,” in
Nucleation and Atmospheric Aerosol 2004
, edited by
M.
Kasahara
and
M.
Kulmala
(
Kyoto University Press
,
Kyoto, Japan
,
2004
), pp.
3
14
.
46.
C. H.
Heath
,
K.
Streletzky
,
B. E.
Wyslouzil
,
J.
Wölk
, and
R.
Strey
,
J. Chem. Phys.
117
,
6176
(
2002
).
47.
A.
Khan
,
C. H.
Heath
,
B. E.
Wyslouzil
,
G.
Wilemski
,
J.
Wölk
, and
R.
Strey
,
J. Chem. Phys.
119
,
3138
(
2003
).
48.
Y. J.
Kim
,
B. E.
Wyslouzil
,
G.
Wilemski
,
J.
Wölk
, and
R.
Strey
,
J. Chem. Phys. A
108
,
4365
(
2004
).
49.
J.
Wölk
and
R.
Strey
,
J. Phys. Chem. B
105
,
11683
(
2001
).
50.
Y.
Viisanen
,
R.
Strey
, and
H.
Reiss
,
J. Chem. Phys.
99
,
4680
(
1993
).
51.
R. C.
Miller
,
R. J.
Anderson
,
J. L.
Kassner
, and
D. E.
Hagen
,
J. Chem. Phys.
78
,
3204
(
1983
).
52.
A. V.
Mokshin
and
B. N.
Galimzyanov
,
J. Phys. Chem. B
116
,
11959
(
2012
).
53.
H.
Matsubara
,
T.
Koishi
,
T.
Ebisuzaki
, and
K.
Yasuoka
,
J. Chem. Phys.
127
,
214507
(
2007
).

Supplementary Material

You do not currently have access to this content.