An improved version of our general-order local coupled-cluster (CC) approach [Z. Rolik and M. Kállay, J. Chem. Phys.135, 104111 (2011)]

and its efficient implementation at the CC singles and doubles with perturbative triples [CCSD(T)] level is presented. The method combines the cluster-in-molecule approach of Li and co-workers [J. Chem. Phys.131, 114109 (2009)] with frozen natural orbital (NO) techniques. To break down the unfavorable fifth-power scaling of our original approach a two-level domain construction algorithm has been developed. First, an extended domain of localized molecular orbitals (LMOs) is assembled based on the spatial distance of the orbitals. The necessary integrals are evaluated and transformed in these domains invoking the density fitting approximation. In the second step, for each occupied LMO of the extended domain a local subspace of occupied and virtual orbitals is constructed including approximate second-order Møller–Plesset NOs. The CC equations are solved and the perturbative corrections are calculated in the local subspace for each occupied LMO using a highly-efficient CCSD(T) code, which was optimized for the typical sizes of the local subspaces. The total correlation energy is evaluated as the sum of the individual contributions. The computation time of our approach scales linearly with the system size, while its memory and disk space requirements are independent thereof. Test calculations demonstrate that currently our method is one of the most efficient local CCSD(T) approaches and can be routinely applied to molecules of up to 100 atoms with reasonable basis sets.

1.
P.
Pulay
,
Chem. Phys. Lett.
100
,
151
(
1983
).
2.
P.
Pulay
and
S.
Saebø
,
Theor. Chim. Acta
69
,
357
(
1986
).
3.
S.
Saebø
and
P.
Pulay
,
J. Chem. Phys.
86
,
914
(
1987
).
4.
S.
Saebø
and
P.
Pulay
,
Chem. Phys. Lett.
113
,
13
(
1985
).
5.
C.
Hampel
and
H.-J.
Werner
,
J. Chem. Phys.
104
,
6286
(
1996
).
6.
M.
Schütz
,
G.
Hetzer
, and
H.-J.
Werner
,
J. Chem. Phys.
111
,
5691
(
1999
).
7.
M.
Schütz
and
H.-J.
Werner
,
J. Chem. Phys.
114
,
661
(
2001
).
8.
M.
Schütz
and
H.-J.
Werner
,
Chem. Phys. Lett.
318
,
370
(
2000
).
9.
M.
Schütz
,
J. Chem. Phys.
113
,
9986
(
2000
).
10.
M.
Schütz
,
J. Chem. Phys.
116
,
8772
(
2002
).
11.
M.
Schütz
,
Phys. Chem. Chem. Phys.
4
,
3941
(
2002
).
12.
D.
Kats
,
T.
Korona
, and
M.
Schütz
,
J. Chem. Phys.
125
,
104106
(
2006
).
13.
D.
Kats
,
T.
Korona
, and
M.
Schütz
,
J. Chem. Phys.
127
,
064107
(
2007
).
14.
G. D.
Purvis
 III
and
R. J.
Bartlett
,
J. Chem. Phys.
76
,
1910
(
1982
).
15.
K.
Raghavachari
,
G. W.
Trucks
,
J. A.
Pople
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
157
,
479
(
1989
).
16.
H.-J.
Werner
and
F. R.
Manby
,
J. Chem. Phys.
124
,
054114
(
2006
).
17.
T. B.
Adler
,
H.-J.
Werner
, and
F. R.
Manby
,
J. Chem. Phys.
130
,
054106
(
2009
).
18.
T. B.
Adler
and
H.-J.
Werner
,
J. Chem. Phys.
135
,
144117
(
2011
).
19.
C.
Krause
and
H.-J.
Werner
,
Phys. Chem. Chem. Phys.
14
,
7591
(
2012
).
20.
H.-J.
Werner
,
F. R.
Manby
, and
P. J.
Knowles
,
J. Chem. Phys.
118
,
8149
(
2003
).
21.
M.
Schütz
and
F. R.
Manby
,
Phys. Chem. Chem. Phys.
5
,
3349
(
2003
).
22.
S.
Loibl
and
M.
Schütz
,
J. Chem. Phys.
137
,
084107
(
2012
).
23.
H.-J.
Werner
and
M.
Schütz
,
J. Chem. Phys.
135
,
144116
(
2011
).
24.
P. Y.
Ayala
and
E.
Scuseria
,
J. Chem. Phys.
110
,
3660
(
1999
).
25.
E.
Scuseria
and
P. Y.
Ayala
,
J. Chem. Phys.
111
,
8330
(
1999
).
26.
P. E.
Maslen
and
M.
Head-Gordon
,
Chem. Phys. Lett.
283
,
102
(
1998
).
27.
P. E.
Maslen
,
A. D.
Dutoi
,
M. S.
Lee
,
Y.
Shao
, and
M.
Head-Gordon
,
Mol. Phys.
103
,
425
(
2005
).
28.
D.
Walter
,
A.
Venkatnathan
, and
E. A.
Carter
,
J. Chem. Phys.
118
,
8127
(
2003
).
29.
T. S.
Chwee
,
A. B.
Szilva
,
R.
Lindh
, and
E. A.
Carter
,
J. Chem. Phys.
128
,
224106
(
2008
).
30.
F.
Neese
,
F.
Wennmohs
, and
A.
Hansen
,
J. Chem. Phys.
130
,
114108
(
2009
).
31.
F.
Neese
,
A.
Hansen
, and
D. G.
Liakos
,
J. Chem. Phys.
131
,
064103
(
2009
).
32.
A.
Hansen
,
D. G.
Liakos
, and
F.
Neese
,
J. Chem. Phys.
135
,
214102
(
2011
).
33.
C.
Riplinger
and
F.
Neese
,
J. Chem. Phys.
138
,
034106
(
2013
).
34.
J.
Yang
,
Y.
Kurashige
,
F. R.
Manby
, and
G. K.-L.
Chan
,
J. Chem. Phys.
134
,
044123
(
2011
).
35.
Y.
Kurashige
,
J.
Yang
,
G. K.-L.
Chan
, and
F. R.
Manby
,
J. Chem. Phys.
136
,
124106
(
2012
).
36.
J.
Yang
,
G. K.-L.
Chan
,
F. R.
Manby
,
M.
Schütz
, and
H.-J.
Werner
,
J. Chem. Phys.
136
,
144105
(
2012
).
37.
M.
Schütz
,
J.
Yang
,
G. K.-L.
Chan
,
F. R.
Manby
, and
H.-J.
Werner
,
J. Chem. Phys.
138
,
054109
(
2013
).
38.
J. A.
Parkhill
and
M.
Head-Gordon
,
Mol. Phys.
108
,
513
(
2010
).
39.
D.
Kats
and
F. R.
Manby
,
J. Chem. Phys.
138
,
144101
(
2013
).
40.
B.
Doser
,
D. S.
Lambrecht
,
J.
Kussmann
, and
C.
Ochsenfeld
,
J. Chem. Phys.
130
,
064107
(
2009
).
41.
J.
Zienau
,
L.
Clin
,
B.
Doser
, and
C.
Ochsenfeld
,
J. Chem. Phys.
130
,
204112
(
2009
).
42.
M. Del
Ben
,
J.
Hutter
, and
J.
VandeVondele
,
J. Chem. Theor. Comput.
8
,
4177
(
2012
).
43.
W.
Förner
,
J.
Ladik
,
P.
Otto
, and
J.
Čížek
,
Chem. Phys.
97
,
251
(
1985
).
44.
H.
Stoll
,
Phys. Rev. B
46
,
6700
(
1992
).
45.
K.
Rościszewski
,
K.
Doll
,
B.
Paulus
,
P.
Fulde
, and
H.
Stoll
,
Phys. Rev. B
57
,
14667
(
1998
).
46.
D. G.
Federov
and
K.
Kitaura
,
J. Chem. Phys.
123
,
134103
(
2005
).
47.
W.
Li
and
S.
Li
,
J. Chem. Phys.
121
,
6649
(
2004
).
48.
M.
Ziółkowski
,
B.
Jansík
,
T.
Kjærgaard
, and
P.
Jørgensen
,
J. Chem. Phys.
133
,
014107
(
2010
).
49.
K.
Kristensen
,
I.-M.
Høyvik
,
B.
Jansík
,
P.
Jørgensen
,
T.
Kjærgaard
,
S.
Reine
, and
J.
Jakowski
,
Phys. Chem. Chem. Phys.
14
,
15706
(
2012
).
50.
M.
Kobayashi
and
H.
Nakai
,
J. Chem. Phys.
129
,
044103
(
2008
).
51.
N.
Flocke
and
R. J.
Bartlett
,
J. Chem. Phys.
121
,
10935
(
2004
).
52.
S.
Li
,
J.
Ma
, and
Y.
Jiang
,
J. Comput. Chem.
23
,
237
(
2002
).
53.
W.
Li
,
P.
Piecuch
,
J. R.
Gour
, and
S.
Li
,
J. Chem. Phys.
131
,
114109
(
2009
).
54.
W.
Li
and
P.
Piecuch
,
J. Phys. Chem. A
114
,
6721
(
2010
).
55.
W.
Li
and
P.
Piecuch
,
J. Phys. Chem. A
114
,
8644
(
2010
).
56.
P.
Arora
,
W.
Li
,
P.
Piecuch
,
J. W.
Evans
,
M.
Albao
, and
M. S.
Gordon
,
J. Phys. Chem. C
114
,
12649
(
2010
).
57.
Z.
Rolik
and
M.
Kállay
,
J. Chem. Phys.
135
,
104111
(
2011
).
58.
M.
Kállay
and
P. R.
Surján
,
J. Chem. Phys.
115
,
2945
(
2001
).
59.
M.
Kállay
and
J.
Gauss
,
J. Chem. Phys.
123
,
214105
(
2005
).
60.
A. P.
Rendell
,
T. J.
Lee
, and
A.
Komornicki
,
Chem. Phys. Lett.
178
,
462
(
1991
).
61.
J. M.
Foster
and
S. F.
Boys
,
Rev. Mod. Phys.
32
,
300
(
1960
).
62.
J.
Pipek
and
P.
Mezey
,
J. Chem. Phys.
90
,
4916
(
1989
).
63.
F.
Aquilante
,
T. B.
Pedersen
,
A. M. Sánchez
de Merás
, and
H.
Koch
,
J. Chem. Phys.
125
,
174101
(
2006
).
64.
J. W.
Boughton
and
P.
Pulay
,
J. Comput. Chem.
14
,
736
(
1993
).
65.
S.
Obara
and
A.
Saika
,
J. Chem. Phys.
84
,
3963
(
1986
).
66.
M.
Head-Gordon
and
J. A.
Pople
,
J. Chem. Phys.
89
,
5777
(
1988
).
67.
H. F.
King
and
M.
Dupuis
,
J. Comput. Phys.
21
,
144
(
1976
).
68.
R.
Lindh
,
U.
Ryu
, and
B.
Liu
,
J. Chem. Phys.
95
,
5889
(
1991
).
69.
N.
Flocke
,
J. Chem. Phys.
131
,
064107
(
2009
).
70.
V. R.
Saunders
and
J. H.
van Lenthe
,
Mol. Phys.
48
,
923
(
1983
).
71.
M.
Feyereisen
,
G.
Fitzgerald
, and
A.
Komornicki
,
Chem. Phys. Lett.
208
,
359
(
1993
).
72.
F. R.
Manby
,
J. Chem. Phys.
119
,
4607
(
2003
).
73.
S.
Höfener
and
W.
Klopper
,
Mol. Phys.
108
,
1783
(
2010
).
74.
F.
Weigend
,
A.
Köhn
, and
C.
Hättig
,
J. Chem. Phys.
116
,
3175
(
2002
).
75.
R.
Ahlrichs
,
Phys. Chem. Chem. Phys.
6
,
5119
(
2004
).
76.
F.
Weigend
,
Phys. Chem. Chem. Phys.
4
,
4285
(
2002
).
77.
R.
Polly
,
H.-J.
Werner
,
F. R.
Manby
, and
P. J.
Knowles
,
Mol. Phys.
102
,
2311
(
2004
).
78.
C.
Hampel
,
K. A.
Peterson
, and
H.-J.
Werner
,
Chem. Phys. Lett.
190
,
1
(
1992
).
79.
M.
Kállay
,
Z.
Rolik
,
I.
Ladjánszki
,
L.
Szegedy
,
B.
Ladóczki
,
J.
Csontos
, and
B.
Kornis
, MRCC, a quantum chemical program suite, see also Ref. 57 as well as http://www.mrcc.hu/.
80.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
81.
R. A.
Kendall
,
T. H.
Dunning
, Jr.
, and
R. J.
Harrison
,
J. Chem. Phys.
96
,
6796
(
1992
).
82.
D. E.
Woon
and
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
98
,
1358
(
1993
).
83.
F.
Weigend
and
R.
Ahlrichs
,
Phys. Chem. Chem. Phys.
7
,
3297
(
2005
).
84.
A.
Schäfer
,
C.
Huber
, and
R.
Ahlrichs
,
J. Chem. Phys.
100
,
5829
(
1994
).
85.
P.
Jurečka
,
J.
Sponer
,
J.
Černy
, and
P.
Hobza
,
Phys. Chem. Chem. Phys.
8
,
1985
(
2006
).
86.
See http://www.chemspider.com. ChemSpider is a free chemical structure database providing access to millions of molecular structures.
87.
P.
Pulay
,
S.
Saebø
, and
W.
Meyer
,
J. Chem. Phys.
81
,
1901
(
1984
).
88.
G. E.
Scuseria
,
C. L.
Janssen
, and
H. F.
Schaefer
 III
,
J. Chem. Phys.
89
,
7382
(
1988
).
89.
J. F.
Stanton
,
J.
Gauss
,
J. D.
Watts
, and
R. J.
Bartlett
,
J. Chem. Phys.
94
,
4334
(
1991
).
You do not currently have access to this content.