The kinetic-energy dependence of the Re+ + O2 reaction is examined using guided ion-beam mass spectrometry. The cross section for ReO+ formation from ground state Re+ (7S) is unusual, exhibiting two endothermic features. The kinetic energy dependence for ReO+ formation is analyzed to determine D0(Re+‑O) = 4.82 ± 0.05 eV, with the higher energy feature having a threshold 1.35 ± 0.28 eV higher in energy. This bond energy is consistent with much less precise values determined in the literature. Formation of ReO2+ is also observed with a pressure dependent cross section, establishing that it is formed in an exothermic reaction of ReO+ with O2. The nature of the bonding for ReO+ and ReO2+ is discussed and analyzed primarily using theoretical calculations at the B3LYP/def2-TZVPPD level of theory. The ground state of ReO+ is identified as either 5Π or 3Δ, with the latter favored once estimates of spin-orbit splitting are included. Bond energies for ground state ReO+ are calculated at this level as well as BP86 and CCSD(T,full) levels using several different basis sets. BP86 theoretical bond energies are higher than the experimental value, whereas B3LYP and CCSD(T,full) values are lower, although estimated spin-orbit corrections increase the latter close to experiment. Potential energy surfaces for the reaction of Re+ with O2 are also calculated at the B3LYP/def2-TZVPPD level of theory and reveal that ground state Re+ (7S) inserts into O2 by forming a Re+(O2) (5A) complex which can then couple with additional surfaces to form ground state ReO2+ (3B1). Several explanations for the unusual dual endothermic features are explored, with no unambiguous explanation being evident. As such, this heavy metal system provides a very interesting experimental phenomenon of both adiabatic and nonadiabatic behavior.

1.
D.
Schröder
and
H.
Schwarz
,
Angew. Chem., Int. Ed. Engl.
34
,
1973
(
1995
).
2.
D.
Schröder
,
H.
Schwarz
, and
S.
Shaik
,
Struct. Bonding
97
,
91
(
2000
).
3.
L.
Brewer
and
G. M.
Rosenblatt
, in
Advances in High Temperature Chemistry
, edited by
L.
Eyring
(
Academic
,
New York
,
1969
), Vol.
2
, p.
1
.
4.
J. B.
Pedley
and
E. M.
Marshall
,
J. Phys. Chem. Ref. Data
12
,
967
(
1983
).
5.
M.
Farber
,
S. P.
Harris
, and
R. D.
Srivastava
,
Combust. Flame
22
,
191
(
1974
).
6.
J. E.
Battles
,
G. E.
Gundersen
, and
R. K.
Edwards
,
J. Phys. Chem.
72
,
3963
(
1968
).
7.
H. B.
Skinner
and
A. W.
Searcy
,
J. Phys. Chem.
77
,
1578
(
1973
).
8.
M.
Beyer
,
C.
Berg
,
G.
Albert
,
U.
Achatz
,
S.
Joos
,
G.
Niedner-Schatteburg
, and
V. E.
Bondybey
,
J. Am. Chem. Soc.
119
,
1466
(
1997
).
9.
M.
Beyer
,
C.
Berg
,
S.
Joos
,
U.
Achatz
,
W.
Hieringer
,
G.
Niedner-Schatteburg
, and
V. E.
Bondybey
,
Int. J. Mass Spectrom.
185–187
,
625
(
1999
).
10.
G. K.
Koyanagi
,
D.
Caraiman
,
V.
Blagojevic
, and
D. K.
Bohme
,
J. Phys. Chem. A
106
,
4581
(
2002
).
11.
V.
Blagojevic
,
E.
Flaim
,
M. J. Y.
Jarvis
,
G. K.
Koyanagi
, and
D. K.
Bohme
,
J. Phys. Chem. A
109
,
11224
(
2005
).
12.
J. J.
Melko
,
S. G.
Ard
,
J. A.
Fournier
,
N. S.
Shuman
,
J.
Troe
, and
A. A.
Viggiano
,
J. Phys. Chem. A
116
,
11500
(
2012
).
13.
N.
Aristov
and
P. B.
Armentrout
,
J. Phys. Chem.
90
,
5135
(
1986
).
14.
S. K.
Loh
,
E. R.
Fisher
,
L.
Lian
,
R. H.
Schultz
, and
P. B.
Armentrout
,
J. Phys. Chem.
93
,
3159
(
1989
).
15.
S. K.
Loh
,
L.
Lian
, and
P. B.
Armentrout
,
J. Chem. Phys.
91
,
6148
(
1989
).
16.
D. E.
Clemmer
,
N. F.
Dalleska
, and
P. B.
Armentrout
,
Chem. Phys. Lett.
190
,
259
(
1992
).
17.
D. E.
Clemmer
,
N. F.
Dalleska
, and
P. B.
Armentrout
,
J. Chem. Phys.
95
,
7263
(
1991
).
18.
D. E.
Clemmer
,
J. L.
Elkind
,
N.
Aristov
, and
P. B.
Armentrout
,
J. Chem. Phys.
95
,
3387
(
1991
).
19.
E. R.
Fisher
,
J. L.
Elkind
,
D. E.
Clemmer
,
R.
Georgiadis
,
S. K.
Loh
,
N.
Aristov
,
L. S.
Sunderlin
, and
P. B.
Armentrout
,
J. Chem. Phys.
93
,
2676
(
1990
).
20.
M. R.
Sievers
and
P. B.
Armentrout
,
J. Chem. Phys.
102
,
754
(
1995
).
21.
M. T.
Rodgers
,
B.
Walker
, and
P. B.
Armentrout
,
Int. J. Mass Spectrom.
182–183
,
99
(
1999
).
22.
Y.-M.
Chen
and
P. B.
Armentrout
,
J. Chem. Phys.
103
,
618
(
1995
).
23.
M. R.
Sievers
,
Y.-M.
Chen
, and
P. B.
Armentrout
,
J. Chem. Phys.
105
,
6322
(
1996
).
24.
M. R.
Sievers
and
P. B.
Armentrout
,
Int. J. Mass Spectrom.
179–180
,
103
(
1998
).
25.
M. R.
Sievers
and
P. B.
Armentrout
,
J. Phys. Chem. A
102
,
10754
(
1998
).
26.
M. R.
Sievers
and
P. B.
Armentrout
,
Inorg. Chem.
38
,
397
(
1999
).
27.
M. R.
Sievers
and
P. B.
Armentrout
,
Int. J. Mass Spectrom.
185–187
,
117
(
1999
).
28.
X.-G.
Zhang
and
P. B.
Armentrout
,
J. Phys. Chem. A
107
,
8904
(
2003
).
29.
X.-G.
Zhang
and
P. B.
Armentrout
,
J. Phys. Chem. A
107
,
8915
(
2003
).
30.
C. S.
Hinton
,
F.-X.
Li
, and
P. B.
Armentrout
,
Int. J. Mass Spectrom.
280
,
226
(
2009
).
31.
F.-X.
Li
,
K.
Gorham
, and
P. B.
Armentrout
,
J. Phys. Chem. A
114
,
11043
(
2010
).
32.
C. S.
Hinton
,
M.
Citir
,
M.
Manard
, and
P. B.
Armentrout
,
Int. J. Mass Spectrom.
308
,
265
(
2011
).
33.
C. S.
Hinton
,
M.
Citir
, and
P. B.
Armentrout
, “
Guided ion-beam and theoretical studies of the reaction of Os+ (6D) with O2: Adiabatic and nonadiabatic behavior
,”
Int. J. Mass Spectrom.
(published online).
34.
M. E.
Weber
,
J. L.
Elkind
, and
P. B.
Armentrout
,
J. Chem. Phys.
84
,
1521
(
1986
).
35.
D. E.
Clemmer
,
M. E.
Weber
, and
P. B.
Armentrout
,
J. Phys. Chem.
96
,
10888
(
1992
).
36.
N. F.
Dalleska
and
P. B.
Armentrout
,
Int. J. Mass Spectrom. Ion Process.
134
,
203
(
1994
).
37.
S. K.
Loh
,
D. A.
Hales
,
L.
Lian
, and
P. B.
Armentrout
,
J. Chem. Phys.
90
,
5466
(
1989
).
38.
R. H.
Schultz
and
P. B.
Armentrout
,
Int. J. Mass Spectrom. Ion Process.
107
,
29
(
1991
).
39.
E.
Teloy
and
D.
Gerlich
,
Chem. Phys.
4
,
417
(
1974
).
40.
41.
N. R.
Daly
,
Rev. Sci. Instrum.
31
,
264
(
1960
).
42.
K. M.
Ervin
and
P. B.
Armentrout
,
J. Chem. Phys.
83
,
166
(
1985
).
43.
P. J.
Chantry
,
J. Chem. Phys.
55
,
2746
(
1971
).
44.
P. B.
Armentrout
and
F.-X.
Li
,
J. Chem. Phys.
121
,
248
(
2004
).
45.
M. M.
Armentrout
,
F.-X.
Li
, and
P. B.
Armentrout
,
J. Phys. Chem. A
108
,
9660
(
2004
).
46.
B. L.
Kickel
and
P. B.
Armentrout
,
J. Am. Chem. Soc.
117
,
4057
(
1995
).
47.
D. E.
Clemmer
,
Y.-M.
Chen
,
F. A.
Khan
, and
P. B.
Armentrout
,
J. Phys. Chem.
98
,
6522
(
1994
).
48.
C. L.
Haynes
and
P. B.
Armentrout
,
Organometallics
13
,
3480
(
1994
).
49.
B. L.
Kickel
and
P. B.
Armentrout
,
J. Am. Chem. Soc.
117
,
764
(
1995
).
50.
Y.-M.
Chen
,
J. L.
Elkind
, and
P. B.
Armentrout
,
J. Phys. Chem.
99
,
10438
(
1995
).
51.
M. R.
Sievers
,
Y.-M.
Chen
,
J. L.
Elkind
, and
P. B.
Armentrout
,
J. Phys. Chem.
100
,
54
(
1996
).
52.
C. E.
Moore
,
Atomic Energy Levels
,
NSRDS-NBS 35
(
U.S. GPO
,
Washington, D.C.
,
1971
).
53.
P. B.
Armentrout
,
Int. J. Mass Spectrom. Ion Process.
200
,
219
(
2000
).
54.
W. J.
Chesnavich
and
M. T.
Bowers
,
J. Phys. Chem.
83
,
900
(
1979
).
55.
P. B.
Armentrout
, in
Advances in Gas Phase Ion Chemistry
, edited by
N.
Adams
and
L. M.
Babcock
(
JAI Press
,
Greenwich, CT
,
1992
), Vol.
1
, p.
83
.
56.
F.
Muntean
and
P. B.
Armentrout
,
J. Chem. Phys.
115
,
1213
(
2001
).
57.
G.
Herzberg
,
Molecular Spectra and Molecular Structure
(
Van Nostrand
,
New York
,
1950
).
58.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
 et al, Gaussian 09, Revision A.02, Gaussian, Inc., Pittsburgh, PA,
2009
.
59.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
60.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
61.
J. P.
Perdew
,
Phys. Rev. B
33
,
8822
(
1986
).
62.
K.
Raghavachari
,
G. W.
Trucks
,
J. A.
Pople
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
157
,
479
(
1989
).
63.
R. J.
Bartlett
,
J. D.
Watts
,
S. A.
Kucharski
, and
J.
Noga
,
Chem. Phys. Lett.
165
,
513
(
1990
).
64.
G. E.
Scuseria
and
T. J.
Lee
,
J. Chem. Phys.
93
,
5851
(
1990
).
65.
T. D.
Crawford
and
J. F.
Stanton
,
Int. J. Quantum Chem.
70
,
601
(
1998
).
66.
F.
Furche
and
J. P.
Perdew
,
J. Chem. Phys.
124
,
044103
(
2006
).
67.
T. G.
Rowland
,
B.
Sztáray
, and
P. B.
Armentrout
,
J. Phys. Chem. A
117
,
1299
1309
(
2013
).
68.
M. W.
Chase
 Jr.
,
C. A.
Davies
,
J. R.
Downey
 Jr.
,
D. J.
Frurip
,
R. A.
McDonald
, and
A. N.
Syverud
,
J. Phys. Chem. Ref. Data
14
(
Suppl. 1
),
1
(
1985
).
69.
F.
Weigend
and
R.
Ahlrichs
,
Phys. Chem. Chem. Phys.
7
,
3297
(
2005
).
70.
D.
Andrae
,
U.
Haeussermann
,
M.
Dolg
,
H.
Stoll
, and
H.
Preuss
,
Theor. Chim. Acta
77
,
123
(
1990
).
71.
D.
Figgen
,
K. A.
Peterson
,
M.
Dolg
, and
H.
Stoll
,
J. Chem. Phys.
130
,
164108
(
2009
).
73.
K. L.
Schuchardt
,
B. T.
Didier
,
T.
Elsethagen
,
L.
Sun
,
V.
Gurumoorthi
,
J.
Chase
,
J.
Li
, and
T. L.
Windus
,
J. Chem. Inf. Model.
47
,
1045
(
2007
).
74.
J. B.
Foresman
and
A. E.
Frisch
,
Exploring Chemistry with Electronic Structure Methods
, 2nd ed. (
Gaussian, Inc.
,
Pittsburgh, PA
,
1996
).
75.
A.
Halkier
,
T.
Helgaker
,
P.
Jørgensen
,
W.
Klopper
, and
J.
Olsen
,
Chem. Phys. Lett.
302
,
437
(
1999
).
76.
A.
Halkier
,
T.
Helgaker
,
P.
Jørgensen
,
W.
Klopper
,
H.
Koch
,
J.
Olsen
, and
A. K.
Wilson
,
Chem. Phys. Lett.
286
,
243
(
1998
).
77.
A.
Kramida
,
Yu.
Ralchenko
,
J.
Reader
, NIST ASD Team, NIST Atomic Spectra Database (version 5.0) (National Institute of Standards and Technology, Gaithersburg, MD,
2012
), see http://physics.nist.gov/asd, accessed 27 July 2013.
78.
G.
Ohanessian
,
M. J.
Brusich
, and
W. A.
Goddard
 III
,
J. Am. Chem. Soc.
112
,
7179
(
1990
).
79.
D.
Dai
and
K.
Balasubramanian
,
J. Chem. Phys.
95
,
4284
(
1991
).
80.
M. C.
Holthausen
,
C.
Heinemann
,
H. H.
Cornehl
,
W.
Koch
, and
H.
Schwartz
,
J. Chem. Phys.
102
,
4931
(
1995
).
81.
G.
Gioumousis
and
D. P.
Stevenson
,
J. Chem. Phys.
29
,
294
(
1958
).
82.
E. W.
Rothe
and
R. B.
Bernstein
,
J. Chem. Phys.
31
,
1619
(
1959
).
83.
M. D.
Campbell-Miller
and
B.
Simard
,
J. Opt. Soc. Am. B
13
,
2115
(
1996
).
84.
C.
Yao
,
W.
Guan
,
P.
Song
,
Z. M.
Su
,
J. D.
Feng
,
L. K.
Yan
, and
Z. J.
Wu
,
Theor. Chem. Acc.
117
,
115
(
2007
).
85.
V.
Brites
,
K.
Franzreb
,
J. N.
Harvey
,
S. G.
Sayres
,
M. W.
Ross
,
D. E.
Blumling
,
A. W.
Castleman
, and
M.
Hochlaf
,
Phys. Chem. Chem. Phys.
13
,
15233
(
2011
).
86.
H.
Lefebvre-Brion
and
R. W.
Field
,
The Spectra and Dynamics of Diatomic Molecules
(
Elsevier
,
Amsterdam
,
2004
).
87.
J.
Cao
,
W. J.
Balfour
, and
C. X. W.
Qian
,
J. Phys. Chem. A
101
,
6741
(
1997
).
88.
I.
Kretzschmar
,
A.
Fiedler
,
J. N.
Harvey
,
D.
Schröder
, and
H.
Schwarz
,
J. Phys. Chem. A
101
,
6252
(
1997
).
89.
Report on notation for the spectra of polyatomic molecules
,”
J. Chem. Phys.
23,
1997
(
1955
).
90.
C.
Rue
,
P. B.
Armentrout
,
I.
Kretzschmar
,
D.
Schroder
,
J. N.
Harvey
, and
H.
Schwarz
,
J. Chem. Phys.
110
,
7858
(
1999
).
91.
G. F.
Stowe
,
R. H.
Schultz
,
C. A.
Wight
, and
P. B.
Armentrout
,
Int. J. Mass Spectrom. Ion Process.
100
,
177
(
1990
).
92.
K. M.
Ervin
and
P. B.
Armentrout
,
J. Chem. Phys.
85
,
6380
(
1986
).
93.
K. M.
Ervin
and
P. B.
Armentrout
,
J. Chem. Phys.
90
,
118
(
1989
).
94.
P. B.
Armentrout
and
F.-X.
Li
, “
The bond energy of IrO+: Guided ion-beam and theoretical studies of the reaction of Ir+ (5F) with O2
,”
J. Phys. Chem. A
(published online).
95.
P. B.
Armentrout
,
L. F.
Halle
, and
J. L.
Beauchamp
,
J. Chem. Phys.
76
,
2449
(
1982
).
You do not currently have access to this content.