We present an investigation into the use of an explicitly correlated plane wave basis for periodic wavefunction expansions at the level of second-order Møller-Plesset (MP2) perturbation theory. The convergence of the electronic correlation energy with respect to the one-electron basis set is investigated and compared to conventional MP2 theory in a finite homogeneous electron gas model. In addition to the widely used Slater-type geminal correlation factor, we also derive and investigate a novel correlation factor that we term Yukawa-Coulomb. The Yukawa-Coulomb correlation factor is motivated by analytic results for two electrons in a box and allows for a further improved convergence of the correlation energies with respect to the employed basis set. We find the combination of the infinitely delocalized plane waves and local short-ranged geminals provides a complementary, and rapidly convergent basis for the description of periodic wavefunctions. We hope that this approach will expand the scope of discrete wavefunction expansions in periodic systems.

1.
A. J.
Cohen
,
P.
Mori-Sánchez
, and
W.
Yang
,
Chem. Rev.
112
,
289
(
2012
).
2.
G. H.
Booth
,
A.
Grüneis
,
G.
Kresse
, and
A.
Alavi
,
Nature (London)
493
,
365
(
2013
).
3.
P.
Ayala
,
K.
Kudin
, and
G.
Scuseria
,
J. Chem. Phys.
115
,
9698
(
2001
).
4.
H.
Stoll
,
B.
Paulus
, and
P.
Fulde
,
J. Chem. Phys.
123
,
144108
(
2005
).
5.
L.
Maschio
,
D.
Usvyat
,
F. R.
Manby
,
S.
Casassa
,
C.
Pisani
, and
M.
Schütz
,
Phys. Rev. B
76
,
075101
(
2007
).
6.
S.
Casassa
,
M.
Halo
,
L.
Maschio
,
C.
Roetti
, and
C.
Pisani
,
Theor. Chem. Acc.
117
,
781
(
2007
).
7.
M.
Marsman
,
A.
Grüneis
,
J.
Paier
, and
G.
Kresse
,
J. Chem. Phys.
130
,
184103
(
2009
).
8.
S. J.
Nolan
,
M. J.
Gillan
,
D.
Alfè
,
N. L.
Allan
, and
F. R.
Manby
,
Phys. Rev. B
80
,
165109
(
2009
).
9.
A.
Grüneis
,
M.
Marsman
, and
G.
Kresse
,
J. Chem. Phys.
133
,
074107
(
2010
).
10.
S. J.
Binnie
,
S. J.
Nolan
,
N. D.
Drummond
,
D.
Alfè
,
N. L.
Allan
,
F. R.
Manby
, and
M. J.
Gillan
,
Phys. Rev. B
82
,
165431
(
2010
).
11.
S. J.
Nolan
,
P. J.
Bygrave
,
N. L.
Allan
, and
F. R.
Manby
,
J. Phys.: Condens. Matter
22
,
074201
(
2010
).
12.
A.
Grüneis
,
G. H.
Booth
,
M.
Marsman
,
J.
Spencer
,
A.
Alavi
, and
G.
Kresse
,
J. Chem. Theory Comput.
7
,
2780
(
2011
).
13.
D.
Usvyat
,
B.
Civalleri
,
L.
Maschio
,
R.
Dovesi
,
C.
Pisani
, and
M.
Schutz
,
J. Chem. Phys.
134
,
214105
(
2011
).
14.
H.
Stoll
and
K.
Doll
,
J. Chem. Phys.
136
,
074106
(
2012
).
15.
C.
Mueller
and
B.
Paulus
,
Phys. Chem. Chem. Phys.
14
,
7605
(
2012
).
16.
M.
Del Ben
,
J.
Hutter
, and
J.
VandeVondele
,
J. Chem. Theory Comput.
8
,
4177
(
2012
).
17.
P. J.
Bygrave
,
N. L.
Allan
, and
F. R.
Manby
,
J. Chem. Phys.
137
,
164102
(
2012
).
18.
K.
Burke
and
L. O.
Wagner
,
Int. J. Quantum Chem.
113
,
1601
(
2013
).
19.
W. M. C.
Foulkes
,
L.
Mitas
,
R. J.
Needs
, and
G.
Rajagopal
,
Rev. Mod. Phys.
73
,
33
(
2001
).
20.
T.
Kato
,
Commun. Pure Appl. Math.
10
,
151
(
1957
).
21.
R. T.
Pack
and
W.
Byers Brown
,
J. Chem. Phys.
45
,
556
(
1966
).
22.
A.
Carlsson
and
N.
Ashcroft
,
Phys. Rev. B
25
,
3474
(
1982
).
23.
X.-Y.
Pan
and
V.
Sahni
,
J. Chem. Phys.
119
,
7083
(
2003
).
24.
D. P.
Tew
,
J. Chem. Phys.
129
,
014104
(
2008
).
25.
S.
Boys
,
Proc. R. Soc. London, Ser. A
258
,
402
(
1960
).
26.
S.
Boys
and
N.
Handy
,
Proc. R. Soc. London, Ser. A
310
,
43
(
1969
).
27.
W.
Kutzelnigg
,
Theor. Chim. Acta
68
,
445
(
1985
).
28.
W.
Klopper
and
W.
Kutzelnigg
,
Chem. Phys. Lett.
134
,
17
(
1987
).
29.
W.
Kutzelnigg
and
W.
Klopper
,
J. Chem. Phys.
94
,
1985
(
1991
).
30.
C.
Hättig
,
W.
Klopper
,
A.
Köhn
, and
D. P.
Tew
,
Chem. Rev.
112
,
4
(
2012
).
31.
L.
Kong
,
F. A.
Bischoff
, and
E. F.
Valeev
,
Chem. Rev.
112
,
75
(
2012
).
32.
D. P.
Tew
,
C.
Hättig
,
R. A.
Bachorz
, and
W.
Klopper
, in
Recent Progress in Coupled Cluster Methods – Theory and Applications
, edited by
P.
Čársky
,
J.
Paldus
, and
J.
Pittner
(
Springer
,
Dordrecht
,
2010
), pp.
535
572
.
33.
H.-J.
Werner
,
T. B.
Adler
,
G.
Knizia
, and
F. R.
Manby
, in
Recent Progress in Coupled Cluster Methods – Theory and Applications
, edited by
P.
Čársky
,
J.
Paldus
, and
J.
Pittner
(
Springer
,
Dordrecht
,
2010
), pp.
573
620
.
34.
S.
Ten-no
and
J.
Noga
,
WIREs Comput. Mol. Sci.
2
,
114
(
2012
).
35.
S.
Ten-no
,
Theor. Chem. Acc.
131
,
1070
(
2012
).
36.
T.
Shiozaki
and
S.
Hirata
,
J. Chem. Phys.
132
,
151101
(
2010
).
37.
W.
Klopper
and
C. C. M.
Samson
,
J. Chem. Phys.
116
,
6397
(
2002
).
38.
E. F.
Valeev
,
Chem. Phys. Lett.
395
,
190
(
2004
).
39.
S.
Kedžuch
,
M.
Milko
, and
J.
Noga
,
Int. J. Quantum Chem.
105
,
929
(
2005
).
40.
S.
Ten-no
,
J. Chem. Phys.
121
,
117
(
2004
).
41.
H.-J.
Werner
,
T. B.
Adler
, and
F. R.
Manby
,
J. Chem. Phys.
126
,
164102
(
2007
).
42.
D. P.
Tew
and
W.
Klopper
,
Mol. Phys.
108
,
315
(
2010
).
43.
A.
May
,
E.
Valeev
,
R.
Polly
, and
F.
Manby
,
Phys. Chem. Chem. Phys.
7
,
2710
(
2005
).
44.
S.
Ten-no
,
Chem. Phys. Lett.
398
,
56
(
2004
).
45.
D. P.
Tew
and
W.
Klopper
,
J. Chem. Phys.
123
,
074101
(
2005
).
46.
K. E.
Yousaf
and
K. A.
Peterson
,
J. Chem. Phys.
129
,
184108
(
2008
).
47.
F. A.
Bischoff
,
S.
Wolfsegger
,
D. P.
Tew
, and
W.
Klopper
,
Mol. Phys.
107
,
963
(
2009
).
48.
F.
Manby
,
J. Chem. Phys.
119
,
4607
(
2003
).
49.
D. P.
Tew
,
B.
Helmich
, and
C.
Haettig
,
J. Chem. Phys.
135
,
074107
(
2011
).
50.
T. B.
Adler
and
H.-J.
Werner
,
J. Chem. Phys.
135
,
144117
(
2011
).
51.
R. J.
Gdanitz
,
Chem. Phys. Lett.
210
,
253
(
1993
).
52.
S.
Ten-no
,
Chem. Phys. Lett.
447
,
175
(
2007
).
53.
T.
Shiozaki
and
H.-J.
Werner
,
J. Chem. Phys.
131
,
141103
(
2010
).
54.
T.
Shiozaki
,
G.
Knizia
, and
H.-J.
Werner
,
J. Chem. Phys.
134
,
034113
(
2011
).
55.
T.
Shiozaki
and
H.-J.
Werner
,
J. Chem. Phys.
134
,
184104
(
2011
).
56.
S.
Kedžuch
,
O.
Demel
,
J.
Pittner
,
S.
Ten-no
, and
J.
Noga
,
Chem. Phys. Lett.
511
,
418
(
2011
).
57.
R.
Haunschild
,
S.
Mao
,
D.
Mukherjee
, and
W.
Klopper
,
Chem. Phys. Lett.
531
,
247
(
2012
).
58.
M.
Torheyden
and
E. F.
Valeev
,
J. Chem. Phys.
131
,
171103
(
2009
).
59.
L.
Kong
and
E. F.
Valeev
,
J. Chem. Phys.
135
,
214105
(
2011
).
60.
L.
Kong
and
E. F.
Valeev
,
J. Chem. Phys.
133
,
174126
(
2010
).
61.
G. H.
Booth
,
D.
Cleland
,
A.
Alavi
, and
D. P.
Tew
,
J. Chem. Phys.
137
,
164112
(
2012
).
62.
T.
Shiozaki
and
H.-J.
Werner
,
Mol. Phys.
111
,
607
(
2013
).
63.
J. J.
Shepherd
,
A.
Grüneis
,
G. H.
Booth
,
G.
Kresse
, and
A.
Alavi
,
Phys. Rev. B
86
,
035111
(
2012
).
64.
W.
Kutzelnigg
and
J.
Morgan
,
J. Chem. Phys.
96
,
4484
(
1992
).
65.
A.
Grüneis
,
M.
Marsman
,
J.
Harl
,
L.
Schimka
, and
G.
Kresse
,
J. Chem. Phys.
131
,
154115
(
2009
).
66.
J. J.
Shepherd
,
G.
Booth
,
A.
Grüneis
, and
A.
Alavi
,
Phys. Rev. B
85
,
081103
(
2012
).
67.
J. J.
Shepherd
,
G. H.
Booth
, and
A.
Alavi
,
J. Chem. Phys.
136
,
244101
(
2012
).
68.
J. J.
Shepherd
and
A.
Grüneis
,
Phys. Rev. Lett.
110
,
226401
(
2013
).
69.
A.
Roggero
,
A.
Mukherjee
, and
F.
Pederiva
, “
Quantum Monte Carlo with coupled-cluster wave functions
,” e-print arXiv:1304.1549 (unpublished).
70.
D. M.
Ceperley
and
B. J.
Alder
,
Phys. Rev. Lett.
45
,
566
(
1980
).
71.
J. P.
Perdew
and
A.
Zunger
,
Phys. Rev. B
23
,
5048
(
1981
).
72.
C.
Moller
and
M.
Plesset
,
Phys. Rev.
46
,
0618
(
1934
).
73.
R. A.
Bachorz
,
F. A.
Bischoff
,
A.
Glöß
,
C.
Hättig
,
S.
Höfener
,
W.
Klopper
, and
D. P.
Tew
,
J. Comput. Chem.
32
,
2492
(
2011
).
74.
D. P.
Tew
and
W.
Klopper
,
J. Chem. Phys.
125
,
094302
(
2006
).
75.
J.
Noga
,
S.
Kedžuch
,
J.
Šimunek
, and
S.
Ten-no
,
J. Chem. Phys.
128
,
174103
(
2008
).
76.
G.
Kresse
and
J.
Furthmuller
,
Phys. Rev. B
54
,
11169
(
1996
).
77.
F.
Gygi
and
A.
Baldereschi
,
Phys. Rev. B
34
,
4405
(
1986
).
78.
T.
Gaskell
,
Proc. Phys. Soc. London
77
,
1182
(
1961
).
79.
D.
Ceperley
,
Phys. Rev. B
18
,
3126
(
1978
).
80.
N.
Umezawa
and
S.
Tsuneyuki
,
Phys. Rev. B
69
,
165102
(
2004
).
81.
S. R.
Chinnamsetty
,
H.
Luo
,
W.
Hackbusch
,
H.-J.
Flad
, and
A.
Uschmajew
,
Chem. Phys.
401
,
36
(
2012
).
82.
K.
Schmidt
and
J.
Moskowitz
,
J. Chem. Phys.
93
,
4172
(
1990
).
83.
D.
Ceperley
and
B.
Alder
,
J. Chem. Phys.
81
,
5833
(
1984
).
84.
J.
Toulouse
and
C. J.
Umrigar
,
J. Chem. Phys.
128
,
174101
(
2008
).
85.
P. E.
Hoggan
,
Int. J. Quantum Chem.
113
,
277
(
2013
).
86.
P. M. W.
Gill
and
P.-F.
Loos
,
Theor. Chem. Acc.
131
,
1069
(
2011
).
87.
P.-F.
Loos
and
P. M. W.
Gill
,
J. Chem. Phys.
138
,
164124
(
2013
).
88.
J.
Noga
and
W.
Kutzelnigg
,
J. Chem. Phys.
101
,
7738
(
1994
).
89.
D. P.
Tew
,
W.
Klopper
,
C.
Neiss
, and
C.
Hättig
,
Phys. Chem. Chem. Phys.
9
,
1921
(
2007
).
90.
T. B.
Adler
,
G.
Knizia
, and
H.-J.
Werner
,
J. Chem. Phys.
127
,
221106
(
2007
).
91.
G. H.
Booth
,
A. J. W.
Thom
, and
A.
Alavi
,
J. Chem. Phys.
131
,
054106
(
2009
).
92.
G. H.
Booth
,
D.
Cleland
,
A. J. W.
Thom
, and
A.
Alavi
,
J. Chem. Phys.
135
,
084104
(
2011
).
93.
D.
Cleland
,
G. H.
Booth
,
C.
Overy
, and
A.
Alavi
,
J. Chem. Theory Comput.
8
,
4138
(
2012
).
94.
D.
Cleland
,
G. H.
Booth
, and
A.
Alavi
,
J. Chem. Phys.
132
,
041103
(
2010
).
You do not currently have access to this content.