The recent implementation of the computation of infrared (IR) intensities beyond the double-harmonic approximation [J. Bloino and V. Barone, J. Chem. Phys.136, 124108 (2012)] https://doi.org/10.1063/1.3695210 paved the route to routine calculations of infrared spectra for a wide set of molecular systems. Halogenated organic compounds represent an interesting class of molecules, from both an atmospheric and computational point of view, due to the peculiar chemical features related to the halogen atoms. In this work, we simulate the IR spectra of eight halogenated molecules (CH2F2, CHBrF2, CH2DBr, CF3Br, CH2CHF, CF2CFCl, cis-CHFCHBr, cis-CHFCHI), using two common hybrid and double-hybrid density functionals in conjunction with both double- and triple-ζ quality basis sets (SNSD and cc-pVTZ) as well as employing the coupled-cluster theory with basis sets of at least triple-ζ quality. Finally, we compare our results with available experimental spectra, with the aim of checking the accuracy and the performances of the computational approaches.

1.
B.
Sen
,
G.
Toon
,
J.-F.
Blavier
,
E.
Fleming
, and
C.
Jackman
,
J. Geophys. Res.
101
,
9045
, doi: (
1996
).
2.
A.
Jain
,
B.
Briegleb
,
K.
Minschwaner
, and
D.
Wuebbles
,
J. Geophys. Res.
105
,
20773
, doi: (
2000
).
3.
D.
McNaughton
,
E.
Robertson
,
D.
Thompson
,
T.
Chimdi
,
M.
Bane
, and
D.
Appadoo
,
J. Anal. Chem.
82
,
7958
(
2010
).
4.
N.
Christidis
,
M.
Hurley
,
S.
Pinnock
,
K.
Shine
, and
T.
Wallington
,
J. Geophys. Res.
102
,
19597
, doi: (
1997
).
5.
V.
Naik
,
A.
Jain
,
K.
Pattern
, and
D.
Wuebbles
,
J. Geophys. Res.
105
,
6903
, doi: (
2000
).
6.
K.
Sihra
,
M.
Hurley
,
K.
Shine
, and
T.
Wallington
,
J. Geophys. Res.
106
,
20493
, doi: (
2001
).
7.
E. A.
Drage
,
D.
Jaksch
,
K. M.
Smith
,
R. A.
McPheat
,
E.
Vasekova
, and
N. J.
Mason
,
J. Quant. Spectrosc. Radiat. Transf.
98
,
44
(
2006
).
8.
H.
Zhang
,
J.
Wu
, and
P.
Lu
,
J. Quant. Spectrosc. Radiat. Transf.
112
,
220
(
2011
).
9.
S.
Pinnock
,
M.
Hurley
,
K.
Shine
,
T.
Wallington
, and
T.
Smyth
,
J. Geophys. Res.
100
,
23227
, doi: (
1995
).
10.
E.
Highwood
and
K.
Shine
,
J. Quant. Spectrosc. Radiat. Transf.
66
,
169
(
2000
).
11.
K.
Smith
,
D.
Newnham
,
M.
Page
,
J.
Ballard
, and
G.
Duxbury
,
J. Quant. Spectrosc. Radiat. Transf.
56
,
73
(
1996
).
12.
K.
Smith
,
D.
Newnham
,
M.
Page
,
J.
Ballard
, and
G.
Duxbury
,
J. Quant. Spectrosc. Radiat. Transf.
59
,
437
(
1998
).
13.
G.
Di Lonardo
and
G.
Masciarelli
,
J. Quant. Spectrosc. Radiat. Transf.
66
,
129
(
2000
).
14.
J.
Ballard
,
R. J.
Knight
,
D.
Newnham
,
J. V.
Auwera
,
M.
Herman
,
G.
Di Lonardo
,
G.
Masciarelli
,
F.
Nicolaisen
,
J.
Beukes
,
L.
Christensen
,
R.
McPheat
,
G.
Duxbury
,
R.
Freckleton
, and
K.
Shine
,
J. Quant. Spectrosc. Radiat. Transf.
66
,
109
(
2000
).
15.
V. L.
Orkin
,
A. G.
Gushin
,
I. K.
Larin
,
R. E.
Huie
, and
M. J.
Kurylo
,
J. Photochem. Photobiol., A
157
,
211
(
2003
).
16.
A.
Pietropolli Charmet
,
N.
Tasinato
,
P.
Stoppa
,
A.
Baldacci
, and
S.
Giorgianni
,
Mol. Phys.
106
,
1171
(
2008
).
17.
P.
Stoppa
,
A.
Pietropolli Charmet
,
N.
Tasinato
,
S.
Giorgianni
, and
A.
Gambi
,
J. Phys. Chem. A
113
,
1497
(
2009
).
18.
A.
Pietropolli Charmet
,
P.
Stoppa
,
N.
Tasinato
,
A.
Baldan
,
S.
Giorgianni
, and
A.
Gambi
,
J. Chem. Phys.
133
,
044310
(
2010
).
19.
N.
Tasinato
,
P.
Stoppa
,
A.
Pietropolli Charmet
,
S.
Giorgianni
,
G.
Buffa
, and
A.
Gambi
,
ChemPhysChem
12
,
356
(
2011
).
20.
N.
Tasinato
,
A.
Pietropolli Charmet
,
P.
Stoppa
,
S.
Giorgianni
, and
A.
Gambi
,
Chem. Phys.
397
,
55
(
2012
).
21.
N.
Tasinato
,
G.
Regini
,
P.
Stoppa
,
A.
Pietropolli Charmet
, and
A.
Gambi
,
J. Chem. Phys.
136
,
214302
(
2012
).
22.
S.
Sekušak
,
K.
Liedl
, and
A.
Sabljić
,
J. Phys. Chem. A
102
,
1583
(
1998
).
23.
I.
Ljubić
and
A.
Sabljić
,
J. Phys. Chem. A
106
,
4745
(
2002
).
24.
I.
Ljubić
and
A.
Sabljić
,
J. Phys. Chem. A
109
,
2381
(
2005
).
25.
M.
Baasandorj
,
G.
Knight
,
V.
Papadimitriou
,
R.
Talukdar
,
A.
Ravishankara
, and
J.
Burkholder
,
J. Phys. Chem. A
114
,
4619
(
2010
).
26.
Computational Strategies for Spectroscopy: From Small Molecules to Nano Systems
, edited by
V.
Barone
(
John Wiley & Sons, Inc.
,
Hoboken, NJ
,
2011
).
27.
V.
Barone
,
R.
Improta
, and
N.
Rega
,
Acc. Chem. Res.
41
,
605
(
2008
).
28.
A.
Pedone
,
M.
Biczysko
, and
V.
Barone
,
ChemPhysChem
11
,
1812
(
2010
).
29.
V.
Barone
,
A.
Baiardi
,
M.
Biczysko
,
J.
Bloino
,
C.
Cappelli
, and
F.
Lipparini
,
Phys. Chem. Chem. Phys.
14
,
12404
(
2012
).
30.
J.
Martin
,
T. L.
Lee
,
P.
Taylor
, and
J.
Franois
,
J. Chem. Phys.
103
,
2589
(
1995
).
31.
A.
Boese
and
J.
Martin
,
J. Phys. Chem. A
108
,
3085
(
2004
).
32.
M.
Biczysko
,
P.
Panek
, and
V.
Barone
,
Chem. Phys. Lett.
475
,
105
(
2009
).
33.
V.
Barone
,
J. Chem. Phys.
120
,
3059
(
2004
).
34.
V.
Barone
,
J. Chem. Phys.
122
,
014108
(
2005
).
35.
M.
Biczysko
,
J.
Bloino
,
G.
Brancato
,
I.
Cacelli
,
C.
Cappelli
,
A.
Ferretti
,
A.
Lami
,
S.
Monti
,
A.
Pedone
,
G.
Prampolini
,
C.
Puzzarini
,
F.
Santoro
,
F.
Trani
, and
G.
Villani
,
Theor. Chem. Acc.
131
,
1201
(
2012
).
36.
K.
Peterson
,
D.
Feller
, and
D.
Dixon
,
Theor. Chem. Acc.
131
,
1079
(
2012
).
37.
H. H.
Nielsen
,
Rev. Mod. Phys.
23
,
90
(
1951
).
38.
I. M.
Mills
,
Molecular Spectroscopy: Modern Research
(
Academic
,
New York
,
1972
).
39.
A. D.
Isaacson
,
D. G.
Truhlar
,
K.
Scanlon
, and
J.
Overend
,
J. Chem. Phys.
75
,
3017
(
1981
).
40.
R. D.
Amos
,
N. C.
Handy
,
W. H.
Green
,
D.
Jayatilaka
,
A.
Willets
, and
P.
Palmieri
,
J. Chem. Phys.
95
,
8323
(
1991
).
41.
J.
Vázquez
and
J. F.
Stanton
,
Mol. Phys.
104
,
377
(
2006
).
42.
J.
Bloino
,
M.
Biczysko
, and
V.
Barone
,
J. Chem. Theory Comput.
8
,
1015
(
2012
).
43.
J.
Bloino
and
V.
Barone
,
J. Chem. Phys.
136
,
124108
(
2012
).
44.
M.
Biczysko
,
J.
Bloino
,
I.
Carnimeo
,
P.
Panek
, and
V.
Barone
,
J. Mol. Struct.
1009
,
74
(
2012
).
45.
A.
Baldacci
,
P.
Stoppa
,
A.
Baldan
,
S.
Giorgianni
, and
A.
Gambi
,
J. Phys. Chem. A
113
,
6083
(
2009
).
46.
A.
Baldacci
,
P.
Stoppa
,
A.
Pietropolli Charmet
,
J.
Scaranto
, and
A.
Gambi
,
Spectrochim. Acta, Part A
60
,
1967
(
2004
).
47.
A.
Baldacci
,
P.
Stoppa
,
A.
Baldan
, and
A.
Gambi
,
J. Mol. Struct.
827
,
165
(
2007
).
48.
Many-Body Methods in Chemistry and Physics: MBPT and Coupled-Cluster Theory
, edited by
I.
Shavitt
and
R.
Bartlett
(
Cambridge University Press
,
Cambridge
,
2009
).
49.
P.
Carbonniere
and
V.
Barone
,
Chem. Phys. Lett.
399
,
226
(
2004
).
50.
M.
Biczysko
,
P.
Panek
,
G.
Scalmani
,
J.
Bloino
, and
V.
Barone
,
J. Chem. Theory Comput.
6
,
2115
(
2010
).
51.
V.
Barone
,
M.
Biczysko
,
J.
Bloino
,
M.
Borkowska-Panek
,
I.
Carnimeo
, and
P.
Panek
,
Int. J. Quantum Chem.
112
,
2185
(
2012
).
52.
I.
Carnimeo
,
M.
Biczysko
,
J.
Bloino
, and
V.
Barone
,
Phys. Chem. Chem. Phys.
13
,
16713
(
2011
).
53.
C.
Puzzarini
and
V.
Barone
,
J. Chem. Phys.
129
,
084306
(
2008
).
54.
C.
Puzzarini
and
V.
Barone
,
Phys. Chem. Chem. Phys.
10
,
6991
(
2008
).
55.
P.
Carbonniere
,
T.
Lucca
,
C.
Pouchan
,
N.
Rega
, and
V.
Barone
,
J. Comput. Chem.
26
,
384
(
2005
).
56.
D.
Begue
,
P.
Carbonniere
, and
C.
Pouchan
,
J. Phys. Chem. A
109
,
4611
(
2005
).
57.
D.
Begue
,
A.
Benidar
, and
C.
Pouchan
,
Chem. Phys. Lett.
430
,
215
(
2006
).
58.
C.
Puzzarini
,
M.
Biczysko
, and
V.
Barone
,
J. Chem. Theory Comput.
6
,
828
(
2010
).
59.
C.
Puzzarini
,
M.
Biczysko
, and
V.
Barone
,
J. Chem. Theory Comput.
7
,
3702
(
2011
).
60.
V.
Barone
,
M.
Biczysko
,
J.
Bloino
, and
C.
Puzzarini
,
Phys. Chem. Chem. Phys.
15
,
1358
(
2013
).
61.
N.
Tasinato
,
A.
Pietropolli Charmet
,
P.
Stoppa
,
S.
Giorgianni
, and
G.
Buffa
,
J. Chem. Phys.
132
,
044315
(
2010
).
62.
V.
Barone
,
J.
Bloino
, and
M.
Biczysko
, “
Vibrationally-resolved electronic spectra in Gaussian 09
” (
2009
), available online at http://dreamslab.sns.it/sites/default/files/download/docs/vibronic_spectra_G09-A02.pdf.
63.
V.
Barone
,
J.
Bloino
,
C. A.
Guido
, and
F.
Lipparini
,
Chem. Phys. Lett.
496
,
157
(
2010
).
64.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
B.
Mennucci
,
G. A.
Petersson
,
H.
Nakatsuji
,
M.
Caricato
,
X.
Li
,
H. P.
Hratchian
,
A. F.
Izmaylov
,
J.
Bloino
,
G.
Zheng
,
J. L.
Sonnenberg
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
J. A.
Montgomery
 Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M.
Bearpark
,
J. J.
Heyd
,
E.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
N.
Rega
,
J. M.
Millam
,
M.
Klene
,
J. E.
Knox
,
J. B.
Cross
,
V.
Bakken
,
C.
Adamo
,
J.
Jaramillo
,
R.
Gomperts
,
R. E.
Stratmann
,
O.
Yazyev
,
A. J.
Austin
,
R.
Cammi
,
C.
Pomelli
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
V. G.
Zakrzewski
,
G. A.
Voth
,
P.
Salvador
,
J. J.
Dannenberg
,
S.
Dapprich
,
A. D.
Daniels
,
Ö.
Farkas
,
J. B.
Foresman
,
J. V.
Ortiz
,
J.
Cioslowski
, and
D. J.
Fox
, Gaussian G09, Revision D.01, Gaussian, Inc., Wallingford, CT,
2009
.
65.
K.
Raghavachari
,
G.
Trucks
,
J.
Pople
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
157
,
479
(
1989
).
66.
J. T. H.
Dunning
,
J. Chem. Phys.
90
,
1007
(
1989
).
67.
A.
Kendall
,
J. T. H.
Dunning
, and
R.
Harrison
,
J. Chem. Phys.
96
,
6796
(
1992
).
68.
D.
Woon
and
J. T. H.
Dunning
,
J. Chem. Phys.
103
,
4572
(
1995
).
69.
J.
Gauss
and
J. F.
Stanton
,
Chem. Phys. Lett.
276
,
70
(
1997
).
70.
J. F.
Stanton
,
J.
Gauss
,
M. E.
Harding
, and
P. G.
Szalay
, CFOUR, a quantum chemical program package, 2011; with contributions from
A. A.
Auer
,
R. J.
Bartlett
,
U.
Benedikt
,
C.
Berger
,
D. E.
Bernholdt
,
Y. J.
Bomble
,
O.
Christiansen
,
M.
Heckert
,
O.
Heun
,
C.
Huber
,
T.-C.
Jagau
,
D.
Jonsson
,
J.
Juselius
,
K.
Klein
,
W. J.
Lauderdale
,
D.
Matthews
,
T.
Metzroth
,
L. A.
Mueck
,
D. P.
ONeill
,
D. R.
Price
,
E.
Prochnow
,
C.
Puzzarini
,
K.
Ruud
,
F.
Schiffmann
,
W.
Schwalbach
,
S.
Stopkowicz
,
A.
Tajti
,
J.
Vazquez
,
F.
Wang
,
J. D.
Watts
and the integral packages MOLECULE (J. Almloef and P. R. Taylor), PROPS (P. R. Taylor), ABACUS (T. Helgaker, H. J. Aa. Jensen, P. Jorgensen, and J. Olsen), and ECP routines by A. V. Mitin and C. van Wuellen. For the current version, see http://www.cfour.de (accessed September 13,
2012
).
71.
V.
Barone
,
M.
Biczysko
,
J.
Bloino
, and
C.
Puzzarini
,
J. Chem. Theory Comput.
9
,
1533
(
2013
).
72.
V.
Barone
,
M.
Biczysko
,
J.
Bloino
, and
C.
Puzzarini
,
Phys. Chem. Chem. Phys.
15
,
10094
10111
(
2013
).
73.
D.
Tew
,
W.
Klopper
,
M.
Heckert
, and
J.
Gauss
,
J. Phys. Chem. A
111
,
11242
(
2007
).
74.
M.
Cortez
,
N.
Brinkmann
,
W.
Polik
,
P.
Taylor
,
Y.
Bomble
, and
J.
Stanton
,
J. Chem. Theory Comput.
3
,
1267
(
2007
).
75.
K.
Peterson
,
B.
Shepler
,
D.
Figgen
, and
H.
Stoll
,
J. Phys. Chem. A
110
,
13877
(
2006
).
76.
K.
Peterson
,
D.
Figgen
,
E.
Goll
,
H.
Stoll
, and
M.
Dolg
,
J. Chem. Phys.
119
,
11113
(
2003
).
77.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
78.
Double and triple-ζ basis sets of sns and n07 families, are available for download,
2012
, visit http://dreamslab.sns.it (accessed April 1, 2013).
79.
V.
Barone
,
P.
Cimino
, and
E.
Stendardo
,
J. Chem. Theory Comput.
4
,
751
(
2008
).
80.
V.
Barone
and
P.
Cimino
,
Chem. Phys. Lett.
454
,
139
(
2008
).
81.
V.
Barone
and
P.
Cimino
,
J. Chem. Theory Comput.
5
,
192
(
2009
).
82.
A.
Bergner
,
M.
Dolg
,
W.
Kuchle
,
H.
Stoll
, and
H.
Preuss
,
Mol. Phys.
80
,
1431
(
1993
).
83.
G.
Igelmann
,
H.
Stoll
, and
H.
Preuss
,
Mol. Phys.
65
,
1321
(
1988
).
84.
S.
Grimme
,
J. Chem. Phys.
124
,
034108
(
2006
).
85.
F.
Neese
,
T.
Schwabe
, and
S.
Grimme
,
J. Chem. Phys.
126
,
124115
(
2007
).
86.
C.
Møller
and
M. S.
Plesset
,
Phys. Rev.
46
,
618
(
1934
).
87.
S.
Stopkowicz
and
J.
Gauss
,
J. Chem. Phys.
129
,
164119
(
2008
).
88.
A. C.
Brown
,
C. E.
Canosa-Mas
,
A. D.
Parr
,
K.
Rothwell
, and
R. P.
Wayne
,
Nature (London)
347
,
541
(
1990
).
89.
R.
Talukdar
,
A.
Mellouki
,
T.
Gierczak
,
J.
Burkholder
,
S.
McKeen
, and
A.
Ravishankara
,
Science
252
,
693
(
1991
).
90.
V.
Orkin
and
V.
Khamaganov
,
J. Atmos. Chem.
16
,
157
(
1993
).
91.
H. P. M.
Filho
and
P. H.
Guadagnini
,
J. Mol. Struct.
464
,
171
(
1999
).
92.
See supplementary material at http://dx.doi.org/10.1063/1.4817401 for tables collecting: coupled-cluster harmonic intensities of CH2F2 and CH2CHF; valence angles of all the molecules; harmonic and anharmonic frequencies of CH2F2, CF3Br, CH2DBr, CH2CHF, cis-CHFCHBr, cis-CHFCHI; harmonic and anharmonic intensities of CH2F2, CF3Br, CH2CHF.

Supplementary Material

You do not currently have access to this content.