We discuss here an exact method to determine the parameters regulating the screened Coulomb interactions among spherical macroions immersed in a simple electrolyte. This approach provides rigorous definitions for the corresponding screening length, effective permittivity, and renormalized charges, and can be employed for precise and reliable calculations of these parameters within any scheme. In particular, we introduce a simple procedure for extracting this information from computer simulations. The viability of this approach is demonstrated by applying it to a three-component model system which includes anionic nanoparticles and monovalent cations and anions. The mean forces between nanoparticles are determined directly from simulations with two macroions, plus small ions, inside a single cell with periodic boundary conditions. The values of the parameters of interest, on the other hand, are gathered from two separate sets of computer simulations: one set provides information about the short-range correlations among the small ions, which in turn determine the screening length and effective permittivity; the second set supplies the short-range components of the ionic distribution around one isolated macroion, which also determine its renormalized charge. The method presented here thus avoids the uncertain fitting of these parameters from the asymptotic tail of the mean force and allows us to investigate in detail this connection between the renormalized charge of the macroion and the short-range (virtual) part of the ionic cloud surrounding it. Using the standard prescription to extract an effective charge from the corresponding renormalized value, we then proceed to clarify the mechanisms behind the possibility of effective charge amplification (i.e., an effective charge larger than the bare macroion charge). Complementarily, we report results for the corresponding bridge functions too.

1.
Dynamic Light Scattering: Applications of Photon Correlation Spectroscopy
, edited by
R.
Pecora
(
Plenum
,
New York
,
1985
).
2.
R.
Krause
,
G.
Nägele
,
D.
Karrer
,
J.
Scheneider
,
R.
Klein
, and
R.
Weber
,
Physica A
153
,
400
(
1988
).
3.
W.
van Megen
,
S. M.
Underwood
, and
P. N.
Pusey
,
Phys. Rev. Lett.
67
,
1586
(
1991
).
4.
M.
Quesada-Pérez
,
J.
Callejas-Fernández
, and
R.
Hidalgo-Álvarez
,
Adv. Colloid Interface Sci.
95
,
295
(
2002
).
5.
L. F.
Rojas-Ochoa
,
R.
Castañeda-Priego
,
V.
Lobaskin
,
A.
Stradner
,
F.
Scheffold
, and
P.
Schurtenberger
,
Phys. Rev. Lett.
100
,
178304
(
2008
).
6.
C.
Haro-Pérez
,
L. F.
Rojas-Ochoa
,
R.
Castañeda-Priego
,
M.
Quesada-Pérez
,
J.
Callejas-Fernández
,
R.
Hidalgo-Álvarez
, and
V.
Trappe
,
Phys. Rev. Lett.
102
,
018301
(
2009
).
7.
M.
Peláez-Fernández
,
A.
Moncho-Jordá
, and
J.
Callejas-Fernández
,
Europhys. Lett.
90
,
46005
(
2010
).
8.
J. C.
Crocker
and
D. G.
Grier
,
Phys. Rev. Lett.
73
,
352
(
1994
).
9.
M. D.
Carbajal-Tinoco
,
F.
Castro-Román
, and
J. L.
Arauz-Lara
,
Phys. Rev. E
53
,
3745
(
1996
).
10.
J. C.
Crocker
and
D. G.
Grier
,
Phys. Rev. Lett.
77
,
1897
(
1996
).
11.
Y.
Han
and
D. G.
Grier
,
Phys. Rev. Lett.
91
,
038302
(
2003
).
12.
M.
Polin
,
D. G.
Grier
, and
Y.
Han
,
Phys. Rev. E
76
,
041406
(
2007
).
13.
C.
Gutsche
,
U. F.
Keyser
,
K.
Kegler
,
F.
Kremer
, and
P.
Linse
,
Phys. Rev. E
76
,
031403
(
2007
).
14.
M. D.
Carbajal-Tinoco
,
R.
Lopez-Fernandez
, and
J. L.
Arauz-Lara
,
Phys. Rev. Lett.
99
,
138303
(
2007
).
15.
B. V. R.
Tata
,
P. S.
Mohanty
, and
M. C.
Valsakumar
,
Solid State Commun.
147
,
360
(
2008
).
16.
E. W.
Gomez
,
N. G.
Clack
,
H.-J.
Wu
, and
J. T.
Groves
,
Soft Matter
5
,
1931
(
2009
).
17.
P.
Tan
,
J.
Huang
,
D.
Liu
,
W.
Tian
, and
L.
Zhou
,
Soft Matter
6
,
4800
(
2010
).
18.
E. J. W.
Verwey
and
J. Th. G.
Overbeek
,
Theory of the Stability of Lyophobic Colloids
(
Elsevier
,
New York
,
1948
).
19.
W. B.
Russel
,
D. A.
Saville
, and
W. R.
Schowalter
,
Colloidal Dispersions
(
Cambridge University Press
,
Cambridge
,
1989
).
20.
M.
Medina-Noyola
and
D. A.
McQuarrie
,
J. Chem. Phys.
73
,
6279
(
1980
).
21.
G. M.
Bell
,
S.
Levine
, and
L. N.
McCartney
,
J. Colloid Interface Sci.
33
,
335
(
1970
).
22.
G. N.
Patey
,
J. Chem. Phys.
72
,
5763
(
1980
).
23.
S.
Alexander
,
P. M.
Chaikin
,
P.
Grant
,
J.
Morales
,
P.
Pincus
, and
D.
Hone
,
J. Chem. Phys.
80
,
5776
(
1984
).
24.
L.
Belloni
,
M.
Drifford
, and
P.
Turq
,
Chem. Phys.
83
,
147
(
1984
).
25.
B.
Beresford-Smith
,
D. Y. C.
Chan
, and
D. J.
Mitchell
,
J. Colloid Interface Sci.
105
,
216
(
1985
).
26.
L.
Belloni
,
J. Chem. Phys.
85
,
519
(
1986
).
27.
S.
Khan
,
T. L.
Morton
, and
D.
Ronis
,
Phys. Rev. A
35
,
4295
(
1987
).
28.
H.
Ruíz-Estrada
,
M.
Medina-Noyola
, and
G.
Nägele
,
Physica A
168
,
919
(
1990
).
29.
H.
Löwen
and
G.
Kramposthuber
,
Europhys. Lett.
23
,
673
(
1993
).
30.
O.
Spalla
and
L.
Belloni
,
Phys. Rev. Lett.
74
,
2515
(
1995
).
31.
L.
Belloni
and
O.
Spalla
,
J. Chem. Phys.
107
,
465
(
1997
).
32.
R.
van Roij
and
J.-P.
Hansen
,
Phys. Rev. Lett.
79
,
3082
(
1997
).
33.
L.
Belloni
,
Colloids Surf., A
140
,
227
(
1998
).
34.
E.
Allahyarov
,
H.
Löwen
, and
S.
Trigger
,
Phys. Rev. E
57
,
5818
(
1998
).
35.
E.
Allahyarov
,
I.
D'Amico
, and
H.
Löwen
,
Phys. Rev. Lett.
81
,
1334
(
1998
).
36.
P.
González-Mozuelos
and
M. D.
Carbajal-Tinoco
,
J. Chem. Phys.
109
,
11074
(
1998
).
37.
J. Z.
Wu
,
D.
Bratko
,
H. W.
Blanch
, and
J. M.
Prausnitz
,
J. Chem. Phys.
111
,
7084
(
1999
).
38.
L.
Belloni
,
J. Phys.: Condens. Matter
12
,
R549
(
2000
).
39.
P.
Linse
and
V.
Lobaskin
,
J. Chem. Phys.
112
,
3917
(
2000
).
40.
J.-P.
Hansen
and
H.
Löwen
,
Annu. Rev. Phys. Chem.
51
,
209
(
2000
).
41.
V.
Lobaskin
,
A.
Lyubartev
, and
P.
Linse
,
Phys. Rev. E
63
,
020401
(
2001
).
43.
M. D.
Carbajal-Tinoco
and
P.
González-Mozuelos
,
J. Chem. Phys.
117
,
2344
(
2002
).
44.
J. A.
Anta
and
S.
Lago
,
J. Chem. Phys.
116
,
10514
(
2002
).
45.
M.
Aubouy
,
E.
Trizac
, and
L.
Bocquet
,
J. Phys. A
36
,
5835
(
2003
).
46.
E.
Trizac
,
L.
Bocquet
,
M.
Aubouy
, and
H. H.
von Grünberg
,
Langmuir
19
,
4027
(
2003
).
47.
A. R.
Denton
,
Phys. Rev. E
70
,
031404
(
2004
).
48.
J. A.
Anta
,
J. Phys.: Condens. Matter
17
,
7935
(
2005
).
49.
R. N.
Behera
and
P.
Gupta-Bhaya
,
J. Chem. Phys.
126
,
044908
(
2007
).
50.
E.
Allahyarov
and
H.
Löwen
,
J. Phys.: Condens. Matter
21
,
424117
(
2009
).
51.
T. E.
Colla
,
Y.
Levin
, and
E.
Trizac
,
J. Chem. Phys.
131
,
074115
(
2009
).
52.
A. R.
Denton
,
J. Phys.: Condens. Matter
22
,
364108
(
2010
).
53.
T. E.
Colla
and
Y.
Levin
,
J. Chem. Phys.
133
,
234105
(
2010
).
54.
G. I.
Guerrero-García
,
P.
González-Mozuelos
, and
M.
Olvera de la Cruz
,
J. Chem. Phys.
135
,
164705
(
2011
).
55.
M.
Turesson
,
B.
Jönsson
, and
C.
Labbez
,
Langmuir
28
,
4926
(
2012
).
56.
R.
Kjellander
and
D. J.
Mitchell
,
J. Chem. Phys.
101
,
603
(
1994
).
57.
R.
Kjellander
and
D. J.
Mitchell
,
Mol. Phys.
91
,
173
(
1997
).
58.
J.
Ulander
and
R.
Kjellander
,
J. Chem. Phys.
114
,
4893
(
2001
).
59.
T.
Laaksonen
,
P.
Ahonen
,
C.
Johans
, and
K.
Kontturi
,
ChemPhysChem
7
,
2143
(
2006
).
60.
61.
R. A.
Robinson
and
R. H.
Stokes
,
Electrolyte Solutions
(
Dover
,
London
,
1959
).
62.
J. F.
Coetzee
and
G. P.
Cunningham
,
J. Am. Chem. Soc.
87
,
2529
(
1965
).
63.
G. I.
Guerrero-García
,
P.
González-Mozuelos
, and
M.
Olvera de la Cruz
, “
Large counterions boost the solubility and renormalized charge of suspended nanoparticles
” (unpublished).
64.
S.
Plimpton
,
J. Comput. Phys.
117
,
1
(
1995
).
65.
LAMMPS Molecular Dynamics Simulator, see http://lammps.sandia.gov/ (August 20,
2010
).
67.
W. G.
Hoover
,
Phys. Rev. A
31
,
1695
(
1985
).
68.
G. I.
Guerrero-García
,
E.
González-Tovar
, and
M.
Olvera de la Cruz
,
Soft Matter
6
,
2056
(
2010
).
69.
B. A.
Grzybowski
,
B.
Kowalczyk
,
I.
Lagzi
,
D.
Wang
,
K. V.
Tretiakov
, and
D. A.
Walker
,
Faraday Discuss.
159
,
201
(
2012
).
70.
Z.-Y.
Wang
and
Y. Q.
Ma
,
J. Phys. Chem. B
114
,
13386
(
2010
).
71.
B.
Modak
,
C. N.
Patra
,
S. K.
Ghosh
, and
P.
Das
,
J. Phys. Chem. B
115
,
12126
(
2011
).
72.
L.
Lue
and
P.
Linse
,
J. Chem. Phys.
135
,
224508
(
2011
).
73.
P. X.
Viveros-Méndez
and
A.
Gil-Villegas
,
J. Chem. Phys.
136
,
154507
(
2012
).
74.
J.
Wen
,
S.
Zhou
,
Z.
Xu
, and
B.
Li
,
Phys. Rev. E
85
,
041406
(
2012
).
75.
F.-H.
Wang
,
Y.-Y.
Wu
, and
Z.-J.
Tan
,
Biopolymers
99
,
370
(
2013
).
77.
K. Ch.
Ng
,
J. Chem. Phys.
61
,
2680
(
1974
).
You do not currently have access to this content.