The stability of liquids under solvophobic confinement can tip in favor of the vapor phase, nucleating a liquid-to-vapor phase transition that induces attractive forces between confining surfaces. In the case of water adjacent to hydrophobic surfaces, experimental and theoretical evidence support confinement-mediated evaporation stabilization of biomolecular and colloidal assemblies. The macroscopic thermodynamic theory of cavitation under confinement establishes the connection between the size of the confining surfaces, interfacial free energies, and bulk solvent pressure with the critical evaporation separation and interfacial forces. While molecular simulations have confirmed the broad theoretical trends, a quantitative comparison based on independent measurements of the interfacial free energies and liquid-vapor coexistence properties has, to the best of our knowledge, not yet been performed. To overcome the challenges of simulating a large number of systems to validate scaling predictions for a three-dimensional fluid, we simulate both the forces and liquid-vapor coexistence properties of a two-dimensional Lennard-Jones fluid confined between solvophobic plates over a range of plate sizes and reservoir pressures. Our simulations quantitatively agree with theoretical predictions for solvent-mediated forces and critical evaporation separations once the length dependence of the solvation free energy of an individual confining plate is taken into account. The effective solid-liquid line tension length dependence results from molecular scale correlations for solvating microscopic plates and asymptotically decays to the macroscopic value for plates longer than 150 solvent diameters. The success of the macroscopic thermodynamic theory at describing two-dimensional liquids suggests application to surfactant monolayers to experimentally confirm confinement-mediated cavitation.

1.
F. H.
Stillinger
,
J. Solution Chem.
2
,
141
(
1973
).
3.
D. M.
Huang
and
D.
Chandler
,
Phys. Rev. E
61
,
1501
(
2000
).
4.
D. M.
Huang
,
P. L.
Geissler
, and
D.
Chandler
,
J. Phys. Chem. B
105
,
6704
(
2001
).
5.
H. S.
Ashbaugh
and
M. E.
Paulaitis
,
J. Am. Chem. Soc.
123
,
10721
(
2001
).
6.
H. S.
Ashbaugh
,
J. Chem. Phys.
130
,
204517
(
2009
).
7.
H. S.
Ashbaugh
and
L. R.
Pratt
,
Rev. Mod. Phys.
78
,
159
(
2006
).
8.
H. S.
Ashbaugh
and
T. M.
Truskett
,
J. Chem. Phys.
134
,
014507
(
2011
).
9.
D. R.
Berard
,
P.
Attard
, and
G. N.
Patey
,
J. Chem. Phys.
98
,
7236
(
1993
).
10.
J.
Forsman
,
B.
Jonsson
,
C. E.
Woodward
, and
H.
Wennerstrom
,
J. Phys. Chem. B
101
,
4253
(
1997
).
11.
D.
Chandler
,
Nature (London)
437
,
640
(
2005
).
12.
K.
Lum
,
D.
Chandler
, and
J. D.
Weeks
,
J. Phys. Chem. B
103
,
4570
(
1999
).
13.
L.
Maibaum
and
D.
Chandler
,
J. Phys. Chem. B
111
,
9025
(
2007
).
14.
X.
Huang
,
R. H.
Zhou
, and
B. J.
Berne
,
J. Phys. Chem. B
109
,
3546
(
2005
).
15.
Y. K.
Cheng
and
P. J.
Rossky
,
Nature (London)
392
,
696
(
1998
).
16.
M. R.
Shirts
,
J. W.
Pitera
,
W. C.
Swope
, and
V. S.
Pande
,
J. Chem. Phys.
119
,
5740
(
2003
).
17.
N.
Giovambattista
,
C. F.
Lopez
,
P. J.
Rossky
, and
P. G.
Debenedetti
,
Proc. Natl. Acad. Sci. U.S.A.
105
,
2274
(
2008
).
18.
R. H.
Zhou
,
X. H.
Huang
,
C. J.
Margulis
, and
B. J.
Berne
,
Science
305
,
1605
(
2004
).
19.
A. J.
Patel
,
P.
Varilly
,
S. N.
Jamadagni
,
M. F.
Hagan
,
D.
Chandler
, and
S.
Garde
,
J. Phys. Chem. B
116
,
2498
(
2012
).
20.
T. A.
Larsen
,
A. J.
Olson
, and
D. S.
Goodsell
,
Structure
6
,
421
(
1998
).
21.
F.
Rodier
,
R. P.
Bahadur
,
P.
Chakrabarti
, and
J.
Janin
,
Proteins: Struct., Funct., Bioinf.
60
,
36
(
2005
).
22.
J. G.
Davis
,
K. P.
Gierszal
,
P.
Wang
, and
D.
Ben-Amotz
,
Nature (London)
491
,
582
(
2012
).
23.
H. K.
Christenson
and
P. M.
Claesson
,
Adv. Colloid Interface Sci.
91
,
391
(
2001
).
24.
S.
Singh
,
J.
Houston
,
F.
van Swol
, and
C. J.
Brinker
,
Nature (London)
442
,
526
(
2006
).
25.
T. R.
Jensen
,
M. O.
Jensen
,
N.
Reitzel
,
K.
Balashev
,
G. H.
Peters
,
K.
Kjaer
, and
T.
Bjornholm
,
Phys. Rev. Lett.
90
,
086101
(
2003
).
26.
M.
Mezger
,
H.
Reichert
,
S.
Schoder
,
J.
Okasinski
,
H.
Scrioder
,
H.
Dosch
,
D.
Palms
,
J.
Ralston
, and
V.
Honkimaki
,
Proc. Natl. Acad. Sci. U.S.A.
103
,
18401
(
2006
).
27.
N.
Choudhury
and
B. M.
Pettitt
,
J. Am. Chem. Soc.
129
,
4847
(
2007
).
28.
P.
Setny
,
Z.
Wang
,
L. T.
Cheng
,
B.
Li
,
J. A.
McCammon
, and
J.
Dzubiella
,
Phys. Rev. Lett.
103
,
187801
(
2009
).
29.
N.
Giovambattista
,
P. J.
Rossky
, and
P. G.
Debenedetti
,
Phys. Rev. E
73
,
041604
(
2006
).
30.
A.
Wallqvist
,
E.
Gallicchio
, and
R. M.
Levy
,
J. Phys. Chem. B
105
,
6745
(
2001
).
31.
F.
Zhu
and
G.
Hummer
,
Proc. Natl. Acad. Sci. U.S.A.
107
,
19814
(
2010
).
32.
N.
Chakrabarti
,
C.
Neale
,
J.
Payandeh
,
E. F.
Pai
, and
R.
Pomes
,
Biophys. J.
98
,
784
(
2010
).
33.
G.
Hummer
,
J. C.
Rasaiah
, and
J. P.
Noworyta
,
Nature (London)
414
,
188
(
2001
).
34.
J.
Mittal
and
G.
Hummer
,
Proc. Natl. Acad. Sci. U.S.A.
105
,
20130
(
2008
).
35.
S.
Rajamani
,
T. M.
Truskett
, and
S.
Garde
,
Proc. Natl. Acad. Sci. U.S.A.
102
,
9475
(
2005
).
36.
J. C.
Rasaiah
,
S.
Garde
, and
G.
Hummer
,
Annu. Rev. Phys. Chem.
59
,
713
(
2008
).
37.
B.
Berne
,
J. D.
Weeks
, and
R. H.
Zhou
,
Annu. Rev. Phys. Chem.
60
,
85
(
2009
).
38.
N.
Giovambattista
,
P. J.
Rossky
, and
P. G.
Debenedetti
,
Annu. Rev. Phys. Chem.
63
,
179
(
2012
).
39.
S. N.
Jamadagni
,
R.
Godwat
, and
S.
Garde
,
Annu. Rev. Chem. Biol. Eng.
2
,
147
(
2011
).
40.
R.
Evans
,
J. Phys.: Condens. Matter
2
,
8989
(
1990
).
41.
X.
Huang
,
C. J.
Margulis
, and
B. J.
Berne
,
Proc. Natl. Acad. Sci. U.S.A.
100
,
11953
(
2003
).
42.
C. A.
Cerdeirina
,
P. G.
Debenedetti
,
P. J.
Rossky
, and
N.
Giovambattista
,
J. Phys. Chem. Lett.
2
,
1000
(
2011
).
43.
S.
Sharma
and
P. G.
Debenedetti
,
J. Phys. Chem. B
116
,
13282
(
2012
).
44.
D.
Frenkel
and
B.
Smit
,
Understanding Molecular Simulation: From Algorithms to Applications
, 2nd ed. (
Academic Press
,
San Diego
,
2001
).
45.
See supplementary material at http://dx.doi.org/10.1063/1.4817661 for simulation studies of the liquid/vapor coexistence and interfacial properties of the two-dimensional Lennard-Jones fluid.
46.
J. R.
Errington
,
J. Chem. Phys.
118
,
9915
(
2003
).
47.
J. S.
Rowlinson
and
B.
Widom
,
Molecular Theory of Capillarity
(
Dover
,
Mineola, New York
,
1982
).
48.
G. M.
Torrie
and
J. P.
Valleau
,
J. Comput. Chem.
23
,
187
(
1977
).
49.
S.
Kumar
,
D.
Bouzida
,
R. H.
Swendsen
,
P. A.
Kollman
, and
J. M.
Rosenberg
,
J. Comput. Chem.
13
(
8
),
1011
(
1992
).
50.
A.
Ben-Naim
,
J. Phys. Chem.
82
,
792
(
1978
).
51.
J.
Israelachvili
,
Intermolecular and Surface Forces
, 3rd ed. (
Academic Press
,
Amsterdam
,
2011
).
52.
V. M.
Kaganer
,
H.
Mohwald
, and
P.
Dutta
,
Rev. Mod. Phys.
71
,
779
(
1999
).

Supplementary Material

You do not currently have access to this content.