The excitation energies of the four lowest-lying singlet excited states of the TiO2, Ti2O4, and Ti3O6 clusters are calculated by a variety of different Equation-of-Motion Coupled Cluster (EOM-CC) approaches in order to obtain benchmark values for the optical excitations of titanium dioxide clusters. More specifically we investigate what the effect is of the inclusion of triple excitations “triples” in the (EOM-)CC scheme on the calculated excited states of the clusters. While for the monomer and dimer the inclusion of triples is found to only cause a rigid shift in the excitation energies, in the case of the trimer the crossing of the excited states is observed. Coupled cluster approaches where triples are treated perturbatively were found to offer no advantage over EOM-CCSD, whereas the active-space methods (EOM-CCSDt(II/I)) were demonstrated to yield results very close to full EOM-CCSDT, but at a much reduced computational cost.

1.
A.
Szabo
and
N. S.
Ostlund
,
Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory
(
McGraw-Hill, Inc.
,
New York
,
1989
), Vol.
1982
.
2.
B. O.
Roos
,
P. R.
Taylor
, and
P. E. M.
Siegbahn
,
Chem. Phys.
48
,
157
(
1980
).
3.
K.
Andersson
,
P. A.
Malmqvist
,
B. O.
Roos
,
A. J.
Sadlej
, and
K.
Wolinski
,
J. Phys. Chem.
94
,
5483
(
1990
).
4.
K.
Andersson
,
P. A.
Malmqvist
, and
B. O.
Roos
,
J. Phys. Chem.
96
,
1218
(
1992
).
5.
J.
Noga
and
R. J.
Bartlett
,
J. Chem. Phys.
86
,
7041
(
1987
).
6.
K. R.
Yang
,
A.
Jalan
,
W. H.
Green
, and
D. G.
Truhlar
,
J. Chem. Theory Comput.
9
,
418
(
2013
).
7.
C.-K.
Lin
,
J.
Li
,
Z.
Tu
,
X.
Li
,
M.
Hayashi
, and
S. H.
Lin
,
RSC Adv.
1
,
1228
(
2011
).
8.
D. J.
Taylor
and
M. J.
Paterson
,
J. Chem. Phys.
133
,
204302
(
2010
).
9.
S.
Hamad
,
C. R. A.
Catlow
,
S. M.
Woodley
,
S.
Lago
, and
J. A.
Mejias
,
J. Phys. Chem. B
109
,
15741
(
2005
).
10.
Z. W.
Qu
and
G. J.
Kroes
,
J. Phys. Chem. B
110
,
8998
(
2006
).
11.
M.
Calatayud
,
L.
Maldonado
, and
C.
Minot
,
J. Phys. Chem. C
112
,
16087
(
2008
).
12.
S.
Li
and
D. A.
Dixon
,
J. Phys. Chem. A
112
,
6646
(
2008
).
13.
Y.
Liu
,
Y.
Yuan
,
Z.
Wang
,
K.
Deng
,
C.
Xiao
, and
Q.
Li
,
J. Chem. Phys.
130
,
174308
(
2009
).
14.
S. A.
Shevlin
and
S. M.
Woodley
,
J. Phys. Chem. C
114
,
17333
(
2010
).
15.
L.
Chiodo
,
M.
Salazar
,
A. H.
Romero
,
S.
Laricchia
,
F.
Della Sala
, and
A.
Rubio
,
J. Phys. Chem.
135
,
244704
(
2011
).
16.
O. A.
Syzgantseva
,
P.
Gonzalez-Navarrete
,
M.
Calatayud
,
S.
Bromley
, and
C.
Minot
,
J. Phys. Chem. C
115
,
15890
(
2011
).
17.
N.
Marom
,
M.
Kim
, and
J. R.
Chelikowsky
,
Phys. Rev. Lett.
108
,
106801
(
2012
).
18.
D. J.
Taylor
and
M. J.
Paterson
,
Chem. Phys.
408
,
1
(
2012
).
19.
D. C.
Comeau
and
R. J.
Bartlett
,
Chem. Phys. Lett.
207
,
414
(
1993
).
20.
J.
Geertsen
,
M.
Rittby
, and
R. J.
Bartlett
,
Chem. Phys. Lett.
164
,
57
(
1989
).
21.
J. F.
Stanton
and
R. J.
Bartlett
,
J. Chem. Phys.
98
,
7029
(
1993
).
22.
H.
Koch
and
P.
Jorgensen
,
J. Chem. Phys.
93
,
3333
(
1990
).
23.
H. J.
Monkhorst
,
Int. J. Quantum Chem., Quantum Chem. Symp.
11
,
421
(
1977
).
24.
H.
Nakatsuji
and
K.
Hirao
,
Chem. Phys. Lett.
47
,
569
(
1977
).
25.
H.
Nakatsuji
and
K.
Hirao
,
J. Chem. Phys.
68
,
2053
(
1978
).
26.
H.
Nakatsuji
and
K.
Hirao
,
J. Chem. Phys.
68
,
4279
(
1978
).
27.
K.
Kowalski
and
P.
Piecuch
,
J. Chem. Phys.
115
,
2966
(
2001
).
28.
K.
Kowalski
,
S.
Hirata
,
M.
Wloch
,
P.
Piecuch
, and
T. L.
Windus
,
J. Chem. Phys.
123
,
074319
(
2005
).
29.
K.
Kowalski
and
P.
Piecuch
,
J. Chem. Phys.
120
,
1715
(
2004
).
30.
K.
Kowalski
and
M.
Valiev
,
Int. J. Quantum Chem.
108
,
2178
(
2008
).
31.
R. J.
Bartlett
and
M.
Musial
,
Rev. Mod. Phys.
79
,
291
(
2007
).
32.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
33.
F.
Weigend
and
R.
Ahlrichs
,
Phys. Chem. Chem. Phys.
7
,
3297
(
2005
).
34.
S.
Grimme
and
M.
Waletzke
,
J. Chem. Phys.
111
,
5645
(
1999
).
35.
F.
Grein
,
J. Chem. Phys.
126
,
034313
(
2007
).
36.
M.
Chen
and
D. A.
Dixon
,
J. Chem. Theory Comput.
9
,
3189
(
2013
).
37.
See supplementary material at http://dx.doi.org/10.1063/1.4817536 for relevant cluster geometries, tables of excitation energies, and orbitals involved in the excitations for monomer and dimer.
38.
A.
Schafer
,
H.
Horn
, and
R.
Ahlrichs
,
J. Chem. Phys.
97
,
2571
(
1992
).
39.
N. B.
Balabanov
and
K. A.
Peterson
,
J. Chem. Phys.
123
,
064107
(
2005
).
40.
R.
Ahlrichs
,
M.
Bar
,
M.
Haser
,
H.
Horn
, and
C.
Kolmel
,
Chem. Phys. Lett.
162
,
165
(
1989
).
41.
P.-W.
Lai
,
H.
Zhang
,
S.
Rajbhandari
,
E.
Valeev
,
K.
Kowalski
, and
P.
Sadayappan
, in
Proceedings of the International Conference on Computational Science
, edited by
H.
Ali
,
Y.
Shi
,
D.
Khazanchi
,
M.
Lees
,
G. D.
VanAlbada
,
J.
Dongarra
, and
P. M. A.
Sloot
(
ICCS
,
2012
), Vol.
9
, p.
412
.
42.
M.
Valiev
,
E. J.
Bylaska
,
N.
Govind
,
K.
Kowalski
,
T. P.
Straatsma
,
H. J. J.
Van Dam
,
D.
Wang
,
J.
Nieplocha
,
E.
Apra
,
T. L.
Windus
, and
W. A.
de Jong
,
Comput. Phys. Commun.
181
,
1477
(
2010
).
43.
I.
Garkusha
,
A.
Nagy
,
Z.
Guennoun
, and
J. P.
Maier
,
Chem. Phys.
353
,
115
(
2008
).
44.
H.
Wang
,
T. C.
Steimle
,
C.
Apetrei
, and
J. P.
Maier
,
Phys. Chem. Chem. Phys.
11
,
2649
(
2009
).
45.
X.
Zhuang
,
A.
Le
,
T. C.
Steimle
,
R.
Nagarajan
,
V.
Gupta
, and
J. P.
Maier
,
Phys. Chem. Chem. Phys.
12
,
15018
(
2010
).

Supplementary Material

You do not currently have access to this content.