We extend a recently developed wave packet method for computing the state-to-state quantum dynamics of AB + CD → ABC + D reactions [M. T. Cvitaš and S. C. Althorpe, J. Phys. Chem. A113, 4557 (2009)] https://doi.org/10.1021/jp8111974 to include the Chebyshev propagator. The method uses the further partitioned approach to reactant-product decoupling, which uses artificial decoupling potentials to partition the coordinate space of the reaction into separate reactant, product, and transition-state regions. Separate coordinates and basis sets can then be used that are best adapted to each region. We derive improved Chebyshev partitioning formulas which include Mandelshtam-and-Taylor-type decoupling potentials, and which are essential for the non-unitary discrete variable representations that must be used in 4-atom reactive scattering calculations. Numerical tests on the fully dimensional OH + H2 → H2O + H reaction for J = 0 show that the new version of the method is as efficient as the previously developed split-operator version. The advantages of the Chebyshev propagator (most notably the ease of parallelization for J > 0) can now be fully exploited in state-to-state reactive scattering calculations on 4-atom reactions.

2.
S. Y. T.
van de Meerakker
,
N.
Vanhaecke
, and
G.
Meijer
,
Annu. Rev. Phys. Chem.
57
,
159
(
2006
).
3.
S. C.
Althorpe
and
D. C.
Clary
,
Annu. Rev. Phys. Chem.
54
,
493
(
2003
).
4.
M. T.
Cvitaš
,
P.
Soldán
,
J. M.
Hutson
,
P.
Honvault
, and
J. M.
Launay
,
J. Chem. Phys.
127
,
074302
(
2007
).
5.
M. T.
Cvitaš
,
P.
Soldán
,
J. M.
Hutson
,
P.
Honvault
, and
J. M.
Launay
,
Phys. Rev. Lett.
94
,
200402
(
2005
).
6.
M.
Mladenović
,
J. Chem. Phys.
112
,
1070
(
2000
).
7.
Hyperspherical basis sets can also be used in the standard wave packet calculations, e.g.,
S.
Adhikari
, and
A. J. C.
Varandas
,
Comput. Phys. Commun.
184
,
270
(
2013
).
8.
C. L.
Xiao
,
X.
Xu
,
S.
Liu
,
T.
Wang
,
W. R.
Dong
,
T. G.
Yang
,
Z. G.
Sun
,
D. X.
Dai
,
X.
Xu
,
D. H.
Zhang
, and
X. M.
Yang
,
Science
333
,
440
(
2011
).
9.
M. H.
Beck
,
A.
Jäckle
,
G. A.
Worth
, and
H. D.
Meyer
,
Phys. Rep.
324
,
1
(
2000
).
10.
R.
Welsch
and
U.
Manthe
,
Mol. Phys.
110
,
703
(
2012
).
11.
R.
Welsch
,
F.
Huarte-Larranaga
, and
U.
Manthe
,
J. Chem. Phys.
136
,
064117
(
2012
).
12.
S.
Bhattacharya
,
A. N.
Panda
, and
H.-D.
Meyer
,
J. Chem. Phys.
132
,
214304
(
2010
).
13.
G.
Schiffel
and
U.
Manthe
,
J. Chem. Phys.
132
,
191101
(
2010
).
14.
C.
Leforestier
,
R. H.
Bisseling
,
C.
Cerjan
,
M. D.
Feit
,
R.
Friesner
,
A.
Guldberg
,
A.
Hammerich
,
G.
Jolicard
,
W.
Karrlein
,
H. D.
Meyer
,
N.
Lipkin
,
O.
Roncero
, and
R.
Kosloff
,
J. Comput. Phys.
94
,
59
(
1991
).
15.
M. D.
Feit
and
J. A.
Fleck
,
J. Chem. Phys.
78
,
301
(
1983
).
16.
H.
Tal-Ezer
and
R.
Kosloff
,
J. Chem. Phys.
81
,
3967
(
1984
).
17.
S. K.
Gray
and
G. G.
Balint-Kurti
,
J. Chem. Phys.
108
,
950
(
1998
).
18.
S. K.
Gray
,
J. Chem. Phys.
96
,
6543
(
1992
).
19.
R.
Chen
and
H.
Guo
,
J. Chem. Phys.
105
,
3569
(
1996
).
20.
Z.
Sun
,
S.-Y.
Lee
,
H.
Guo
, and
D. H.
Zhang
,
J. Chem. Phys.
130
,
174102
(
2009
).
21.
T.
Peng
and
J. Z. H.
Zhang
,
J. Chem. Phys.
105
,
6072
(
1996
).
22.
S. C.
Althorpe
,
D. J.
Kouri
, and
D. K.
Hoffman
,
J. Chem. Phys.
106
,
7629
(
1997
).
23.
Y.
Zhang
,
J.
Zhang
,
H.
Zhang
,
Q.
Zhang
, and
J. Z. H.
Zhang
,
J. Chem. Phys.
115
,
8455
(
2001
).
24.
Z. G.
Sun
,
D. H.
Zhang
, and
M. H.
Alexander
,
J. Chem. Phys.
132
,
034308
(
2010
).
25.
S. C.
Althorpe
,
J. Chem. Phys.
114
,
1601
(
2001
).
26.
M. T.
Cvitaš
and
S. C.
Althorpe
,
J. Phys. Chem. A
113
,
4557
(
2009
).
27.
M. T.
Cvitaš
and
S. C.
Althorpe
,
Phys. Scr.
80
,
048115
(
2009
).
28.
M. T.
Cvitaš
and
S. C.
Althorpe
,
J. Chem. Phys.
134
,
024309
(
2011
).
29.
S.
Liu
,
X.
Xu
, and
D. H.
Zhang
,
J. Chem. Phys.
136
,
144302
(
2012
).
30.
V. A.
Mandelshtam
and
H. S.
Taylor
,
J. Chem. Phys.
102
,
7390
(
1995
).
31.
J.
Mayneris
,
M.
González
, and
S. K.
Gray
,
Comput. Phys. Commun.
179
,
741
(
2008
).
32.
B.
Jiang
,
D.
Xie
, and
H.
Guo
,
J. Chem. Phys.
135
,
084112
(
2011
).
33.
V. A.
Mandelshtam
and
H. S.
Taylor
,
J. Chem. Phys.
103
,
2903
(
1995
).
34.
D. E.
Manolopoulos
,
J. Chem. Phys.
117
,
9552
(
2002
).
35.
T.
Gonzalez-Lezana
,
E. J.
Rackham
, and
D. E.
Manolopoulos
,
J. Chem. Phys.
120
,
2247
(
2004
).
36.
D. J.
Kouri
and
D. K.
Hoffman
,
Few-Body Syst.
18
,
203
(
1995
).
37.
R. G.
Newton
,
Scattering Theory of Waves and Particles
(
Springer Verlag
,
New York
,
1982
).
38.
Y.
Huang
,
W.
Zhu
,
D. J.
Kouri
, and
D. K.
Hoffman
,
Chem. Phys. Lett.
206
,
96
(
1993
).
39.
S. C.
Althorpe
,
D. J.
Kouri
, and
D. K.
Hoffman
,
J. Chem. Phys.
107
,
7816
(
1997
).
40.
S. C.
Althorpe
,
D. J.
Kouri
, and
D. K.
Hoffman
,
J. Phys. Chem. A
102
,
9494
(
1998
).
41.
Y.
Huang
,
W.
Zhu
,
D. J.
Kouri
, and
D. K.
Hoffman
,
J. Phys. Chem.
98
,
1868
(
1994
).
42.
J.
Echave
and
D. C.
Clary
,
Chem. Phys. Lett.
190
,
225
(
1992
).
43.
D. H.
Zhang
and
J. C.
Light
,
J. Chem. Phys.
104
,
4544
(
1996
).
44.
G. C.
Corey
and
J. W.
Tromp
,
J. Chem. Phys.
103
,
1812
(
1995
).
45.
R. Q.
Chen
and
H.
Guo
,
J. Chem. Phys.
110
,
2771
(
1999
).
46.
M. R.
Portnoff
,
IEEE Trans. Image Process.
8
,
1265
(
1999
).
47.
A. J. H. M.
Meijer
,
E. M.
Goldfield
,
S. K.
Gray
, and
G. G.
Balint-Kurti
,
Chem. Phys. Lett.
293
,
270
(
1998
).
48.
G.-S.
Wu
,
G. C.
Schatz
,
G.
Lendvay
,
D.-C.
Fang
, and
L. B.
Harding
,
J. Chem. Phys.
113
,
3150
(
2000
).
49.
Ref. 22 uses a slightly different prescription. Both work equally well.
50.
M. T.
Cvitaš
and
S. C.
Althorpe
,
Comput. Phys. Commun.
177
,
357
(
2007
).
51.
E. M.
Goldfield
and
S. K.
Gray
,
Comput. Phys. Commun.
98
,
1
(
1996
).
You do not currently have access to this content.