A quantum mechanical force field (QMFF) for water is described. Unlike traditional approaches that use quantum mechanical results and experimental data to parameterize empirical potential energy functions, the present QMFF uses a quantum mechanical framework to represent intramolecular and intermolecular interactions in an entire condensed-phase system. In particular, the internal energy terms used in molecular mechanics are replaced by a quantum mechanical formalism that naturally includes electronic polarization due to intermolecular interactions and its effects on the force constants of the intramolecular force field. As a quantum mechanical force field, both intermolecular interactions and the Hamiltonian describing the individual molecular fragments can be parameterized to strive for accuracy and computational efficiency. In this work, we introduce a polarizable molecular orbital model Hamiltonian for water and for oxygen- and hydrogen-containing compounds, whereas the electrostatic potential responsible for intermolecular interactions in the liquid and in solution is modeled by a three-point charge representation that realistically reproduces the total molecular dipole moment and the local hybridization contributions. The present QMFF for water, which is called the XP3P (explicit polarization with three-point-charge potential) model, is suitable for modeling both gas-phase clusters and liquid water. The paper demonstrates the performance of the XP3P model for water and proton clusters and the properties of the pure liquid from about 900 × 106 self-consistent-field calculations on a periodic system consisting of 267 water molecules. The unusual dipole derivative behavior of water, which is incorrectly modeled in molecular mechanics, is naturally reproduced as a result of an electronic structural treatment of chemical bonding by XP3P. We anticipate that the XP3P model will be useful for studying proton transport in solution and solid phases as well as across biological ion channels through membranes.

1.
A. D.
MacKerell
 Jr.
,
J. Comput. Chem.
25
,
1584
(
2004
).
2.
J. W.
Ponder
and
D. A.
Case
,
Adv. Protein Chem.
66
,
27
(
2003
).
4.
B.
Schropp
and
P.
Tavan
,
J. Phys. Chem. B
112
,
6233
(
2008
).
5.
C.
Vega
,
J. L. F.
Abascal
, and
P. G.
Debenedetti
,
Phys. Chem. Chem. Phys.
13
,
19660
(
2011
).
6.
J. D.
Bernal
and
R. H.
Fowler
,
J. Chem. Phys.
1
,
515
(
1933
).
7.
W. L.
Jorgensen
,
J. Chem. Theory Comput.
3
,
1877
(
2007
).
8.
H. J. C.
Berendsen
,
J. P. M.
Postama
,
W. F.
van Gunsteren
, and
J.
Hermans
, in
Intermolecular Forces
, edited by
B.
Pullmann
(
D. Reidel Publishing Company
,
Dordrecht
,
1981
), p.
331
.
9.
W. L.
Jorgensen
,
J.
Chandrasekhar
,
J. D.
Madura
,
R. W.
Impey
, and
M. L.
Klein
,
J. Chem. Phys.
79
,
926
(
1983
).
10.
P.
Ren
and
J. W.
Ponder
,
J. Phys. Chem. B
107
,
5933
(
2003
).
11.
J.
Gao
,
J. Phys. Chem. B
101
,
657
(
1997
).
12.
J.
Gao
,
J. Chem. Phys.
109
,
2346
(
1998
).
13.
W.
Xie
,
M.
Orozco
,
D. G.
Truhlar
, and
J.
Gao
,
J. Chem. Theory Comput.
5
,
459
(
2009
).
14.
W.
Xie
,
L.
Song
,
D. G.
Truhlar
, and
J.
Gao
,
J. Chem. Phys.
128
,
234108
(
2008
).
15.
W.
Xie
and
J.
Gao
,
J. Chem. Theory Comput.
3
,
1890
(
2007
).
16.
S. J.
Wierzchowski
,
D. A.
Kofke
, and
J.
Gao
,
J. Chem. Phys.
119
,
7365
(
2003
).
17.
F. J.
Vesely
,
J. Comput. Phys.
24
,
361
(
1977
).
18.
A. E.
Howard
,
U. C.
Singh
,
M.
Billeter
, and
P. A.
Kollman
,
J. Am. Chem. Soc.
110
,
6984
(
1988
).
19.
D. N.
Bernardo
,
Y.
Ding
,
K.
Krogh-Jespersen
, and
R. M.
Levy
,
J. Phys. Chem.
98
,
4180
(
1994
).
20.
J.
Gao
,
D.
Habibollazadeh
, and
L.
Shao
,
J. Phys. Chem.
99
,
16460
(
1995
).
21.
J. M.
Stout
and
C. E.
Dykstra
,
J. Phys. Chem. A
102
,
1576
(
1998
).
22.
J.
Applequist
,
J. R.
Carl
, and
K.-K.
Fung
,
J. Am. Chem. Soc.
94
,
2952
(
1972
).
24.
P. T.
van Duijnen
and
M.
Swart
,
J. Phys. Chem. A
102
,
2399
(
1998
).
25.
H. B.
Yu
,
T.
Hansson
, and
W. F.
van Gunsteren
,
J. Chem. Phys.
118
,
221
(
2003
).
26.
G.
Lamoureux
,
E.
Harder
,
I. V.
Vorobyov
,
B.
Roux
, and
A. D.
MacKerell
,
Chem. Phys. Lett.
418
,
245
(
2006
).
27.
A. K.
Rappe
and
W. A.
Goddard
,
J. Phys. Chem.
95
,
3358
(
1991
).
28.
S. W.
Rick
,
S. J.
Stuart
, and
B. J.
Berne
,
J. Chem. Phys.
101
,
6141
(
1994
).
29.
G. A.
Kaminski
,
H. A.
Stern
,
B. J.
Berne
, and
R. A.
Friesner
,
J. Phys. Chem. A
108
,
621
(
2004
).
30.
S. M.
Valone
,
J. Chem. Theory Comput.
7
,
2253
(
2011
).
31.
W.
Kohn
,
A. D.
Becke
, and
R. G.
Parr
,
J. Phys. Chem.
100
,
12974
(
1996
).
32.
T. J.
Giese
and
D. M.
York
,
J. Chem. Phys.
127
,
194101
(
2007
).
33.
A.
Cembran
,
P.
Bao
,
Y.
Wang
,
L.
Song
,
D. G.
Truhlar
, and
J.
Gao
,
J. Chem. Theory Comput.
6
,
2469
(
2010
).
34.
J.
Gao
,
A.
Cembran
, and
Y.
Mo
,
J. Chem. Theory Comput.
6
,
2402
(
2010
).
35.
L.
Song
,
J.
Han
,
Y. L.
Lin
,
W.
Xie
, and
J.
Gao
,
J. Phys. Chem. A
113
,
11656
(
2009
).
36.
J. B.
Han
,
D. G.
Truhlar
, and
J. L.
Gao
,
Theor. Chem. Acc.
131
,
1161
(
2012
).
37.
Y. J.
Wang
,
C. P.
Sosa
,
A.
Cembran
,
D. G.
Truhlar
, and
J. L.
Gao
,
J. Phys. Chem. B
116
,
6781
(
2012
).
38.
Y. R.
Mo
,
P.
Bao
, and
J. L.
Gao
,
Phys. Chem. Chem. Phys.
13
,
6760
(
2011
).
39.
J. A.
Pople
,
D. P.
Santry
, and
G. A.
Segal
,
J. Chem. Phys.
43
,
S129
(
1965
).
40.
M. J. S.
Dewar
,
E. G.
Zoebisch
,
E. F.
Healy
, and
J. J. P.
Stewart
,
J. Am. Chem. Soc.
107
,
3902
(
1985
).
41.
J. J. P.
Stewart
,
J. Comput.-Aided Mol. Des.
4
,
1
(
1990
).
42.
G. B.
Rocha
,
R. O.
Freire
,
A. M.
Simas
, and
J. J. P.
Stewart
,
J. Comput. Chem.
27
,
1101
(
2006
).
43.
J. J. P.
Stewart
,
J. Mol. Model
13
,
1173
(
2007
).
44.
C. A.
Morgado
,
J. P.
McNamara
,
I. H.
Hillier
, and
N. A.
Burton
,
J. Chem. Theory Comput.
3
,
1656
(
2007
).
45.
J. P.
McNamara
and
I. H.
Hillier
,
Phys. Chem. Chem. Phys.
9
,
2362
(
2007
).
46.
J. P.
McNamara
,
R.
Sharma
,
M. A.
Vincent
,
I. H.
Hillier
, and
C. A.
Morgado
,
Phys. Chem. Chem. Phys.
10
,
128
(
2008
).
47.
T.
Tuttle
and
W.
Thiel
,
Phys. Chem. Chem. Phys.
10
,
2159
(
2008
).
48.
M.
Korth
and
W.
Thiel
,
J. Chem. Theory Comput.
7
,
2929
(
2011
).
49.
P.
Zhang
,
L.
Fiedler
,
H. R.
Leverentz
,
D. G.
Truhlar
, and
J. L.
Gao
,
J. Chem. Theory Comput.
7
,
857
(
2011
).
50.
L.
Fiedler
,
J. L.
Gao
, and
D. G.
Truhlar
,
J. Chem. Theory Comput.
7
,
852
(
2011
).
51.
M.
Isegawa
,
L.
Fiedler
,
H. R.
Leverentz
,
Y. J.
Wang
,
S.
Nachimuthu
,
J. L.
Gao
, and
D. G.
Truhlar
,
J. Chem. Theory Comput.
9
,
33
(
2013
).
52.
K.
Jug
and
G.
Geudtner
,
J. Comput. Chem.
14
,
639
(
1993
).
53.
M. J. S.
Dewar
and
W.
Thiel
,
J. Am. Chem. Soc.
99
,
4899
(
1977
).
54.
K. T.
Tang
and
J. P.
Toennies
,
J. Chem. Phys.
80
,
3726
(
1984
).
55.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
,
J. Chem. Phys.
132
,
154104
(
2010
).
56.
J. J. P.
Stewart
,
Rev. Comput. Chem.
1
,
45
(
1990
).
57.
M. C.
Zerner
,
Rev. Comput. Chem.
2
,
313
(
1991
).
58.
M. J. S.
Dewar
and
W.
Thiel
,
J. Am. Chem. Soc.
99
,
4907
(
1977
).
59.
M. J. S.
Dewar
and
W.
Thiel
,
Theoret. Chim. Acta
46
,
89
(
1977
).
60.
J.
Gao
and
Y.
Wang
,
J. Chem. Phys.
136
,
071101
(
2012
).
61.
T. J.
Giese
,
H. Y.
Chen
,
T.
Dissanayake
,
G. M.
Giambasu
,
H.
Heldenbrand
,
M.
Huang
,
E. R.
Kuechler
,
T. S.
Lee
,
M. T.
Panteva
,
B. K.
Radak
, and
D. M.
York
,
J. Chem. Theory Comput.
9
,
1417
(
2013
).
62.
T.
Nakano
,
T.
Kaminuma
,
T.
Sato
,
K.
Fukuzawa
,
Y.
Akiyama
,
M.
Uebayasi
, and
K.
Kitaura
,
Chem. Phys. Lett.
351
,
475
(
2002
).
63.
W. D.
Cornell
,
P.
Cieplak
,
C. I.
Bayly
,
I. R.
Gould
,
K. M.
Merz
 Jr.
,
D. M.
Ferguson
,
D. C.
Spellmeyer
,
T.
Fox
,
J. W.
Caldwell
, and
P. A.
Kollman
,
J. Am. Chem. Soc.
117
,
5179
(
1995
).
64.
P.
Cieplak
,
J.
Caldwell
, and
P.
Kollman
,
J. Comput. Chem.
22
,
1048
(
2001
).
65.
J.
Wang
,
P.
Cieplak
, and
P. A.
Kollman
,
J. Comput. Chem.
21
,
1049
(
2000
).
66.
A. J.
Stone
,
The Theory of Intermolecular Forces
(
Oxford University Press
,
Oxford
,
1996
).
67.
M. S.
Gordon
,
L.
Slipchenko
,
H.
Li
, and
J. H.
Jensen
,
Annu. Rep. Comp. Chem.
3
,
177
(
2007
).
68.
H. R.
Leverentz
,
J. L.
Gao
, and
D. G.
Truhlar
,
Theor. Chem. Acc.
129
,
3
(
2011
).
69.
W. J.
Hehre
,
L.
Radom
,
P. v. R.
Schleyer
, and
J. A.
Pople
,
Ab Initio Molecular Orbital Theory
(
John Wiley & Sons
,
New York
,
1986
).
70.
J.
Li
,
T.
Zhu
,
C. J.
Cramer
, and
D. G.
Truhlar
,
J. Phys. Chem. A
102
,
1820
(
1998
).
71.
A. V.
Marenich
,
S. V.
Jerome
,
C. J.
Cramer
, and
D. G.
Truhlar
,
J. Chem. Theory Comput.
8
,
527
(
2012
).
72.
B. T.
Thole
and
P. T.
van Duijnen
,
Theor. Chim. Acta
63
,
209
(
1983
).
73.
M.
Swart
,
P. T.
Van Duijnen
, and
J. G.
Snijders
,
J. Comput. Chem.
22
,
79
(
2001
).
74.
P.
Zhang
,
P.
Bao
, and
J. L.
Gao
,
J. Comput. Chem.
32
,
2127
(
2011
).
75.
J. A.
Pople
and
G. A.
Segal
,
J. Chem. Phys.
43
,
S136
(
1965
).
76.
S. A.
Clough
,
Y.
Beers
,
G. P.
Klein
, and
L. S.
Rothman
,
J. Chem. Phys.
59
,
2254
(
1973
).
77.
V. S.
Bryantsev
,
M. S.
Diallo
,
A. C. T.
van Duin
, and
W. A. I.
Goddard
,
J. Chem. Theory Comput.
5
,
1016
(
2009
).
78.
H. A.
Stern
,
F.
Rittner
,
B. J.
Berne
, and
R. A.
Friesner
,
J. Chem. Phys.
115
,
2237
(
2001
).
79.
M. W.
Mohoney
and
W. L.
Jorgensen
,
J. Chem. Phys.
112
,
8910
(
2000
).
80.
P.
Zhang
,
D. G.
Truhlar
, and
J.
Gao
,
Phys. Chem. Chem. Phys.
14
,
7821
(
2012
).
81.
H. C.
Andersen
,
J. Chem. Phys.
72
,
2384
(
1980
).
82.
E. A.
Koopman
and
C. P.
Lowe
,
J. Chem. Phys.
124
,
204103
(
2006
).
83.
S.
Miyamoto
and
P. A.
Kollman
,
J. Comput. Chem.
13
,
952
(
1992
).
84.
K.
Nam
,
J.
Gao
, and
D. M.
York
,
J. Chem. Theory Comput.
1
,
2
(
2005
).
85.
J.
Gao
and
X.
Xia
,
Science
258
,
631
(
1992
).
86.
K.
Kitaura
,
E.
Ikeo
,
T.
Asada
,
T.
Nakano
, and
M.
Uebayasi
,
Chem. Phys. Lett.
313
,
701
(
1999
).
87.
J.
Gao
,
J.
Han
, and
P.
Zhang
, MCSOL, version 2012xp, Minneapolis,
2012
.
88.
M.
Mazack
and
J.
Gao
, X-Pol, version 2013a1, University of Minnesota,
2013
.
89.
B. R.
Brooks
,
C. L.
Brooks
,
A. D.
Mackerell
,
L.
Nilsson
,
R. J.
Petrella
,
B.
Roux
,
Y.
Won
,
G.
Archontis
,
C.
Bartels
,
S.
Boresch
,
A.
Caflisch
,
L.
Caves
,
Q.
Cui
,
A. R.
Dinner
,
M.
Feig
,
S.
Fischer
,
J.
Gao
,
M.
Hodoscek
,
W.
Im
,
K.
Kuczera
,
T.
Lazaridis
,
J.
Ma
,
V.
Ovchinnikov
,
E.
Paci
,
R. W.
Pastor
,
C. B.
Post
,
J. Z.
Pu
,
M.
Schaefer
,
B.
Tidor
,
R. M.
Venable
,
H. L.
Woodcock
,
X.
Wu
,
W.
Yang
,
D. M.
York
, and
M.
Karplus
,
J. Comput. Chem.
30
,
1545
(
2009
).
90.
J. C.
Phillips
,
R.
Braun
,
W.
Wang
,
J.
Gumbart
,
E.
Tajkhorshid
,
E.
Villa
,
C.
Chipot
,
R. D.
Skeel
,
L.
Kale
, and
K.
Schulten
,
J. Comput. Chem.
26
,
1781
(
2005
).
91.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
 et al, GAUSSIAN 09, Rev. A.02, Gaussian, Inc., Wallingford, CT,
2009
).
92.
G.
Lamoureux
,
A. D.
MacKerell
 Jr.
, and
B.
Roux
,
J. Chem. Phys.
119
,
5185
(
2003
).
93.
W. S.
Benedict
,
N.
Gailar
, and
E. K.
Plyler
,
J. Chem. Phys.
24
,
1139
(
1956
).
94.
C. J.
Burnham
and
S. S.
Xantheas
,
J. Chem. Phys.
116
,
5115
(
2002
).
95.
H.
Partridge
and
D. W.
Schwenke
,
J. Chem. Phys.
106
,
4618
(
1997
).
96.
E.
Whalley
and
D. D.
Klug
,
J. Chem. Phys.
84
,
78
(
1986
).
97.
L. S.
Rothman
,
C. P.
Rinsland
,
A.
Goldman
,
S. T.
Massie
,
D. P.
Edwards
,
J. M.
Flaud
,
A.
Perrin
,
C.
Camy-Peyret
,
V.
Dana
,
J. Y.
Mandin
,
J.
Schroeder
,
A.
McCann
,
R. R.
Gamache
,
R. B.
Wattson
,
K.
Yoshino
,
K. V.
Chance
,
K. W.
Jucks
,
L. R.
Brown
,
V.
Nemtchinov
, and
P.
Varanasi
,
J. Quant. Spectrosc. Radiat. Transf.
111
,
1568
(
2010
).
98.
L. A.
Curtiss
,
D. J.
Frurip
, and
M.
Blander
,
J. Chem. Phys.
71
,
2703
(
1979
).
99.
K.
Liu
,
M. G.
Brown
, and
R. J.
Saykally
,
J. Phys. Chem. A
101
,
8995
(
1997
).
100.
M.
Piris
,
J. M.
Matxain
,
X.
Lopez
, and
J. M.
Ugalde
,
J. Chem. Phys.
132
,
031103
(
2010
).
101.
S. S.
Xantheas
,
Struct. Bond
116
,
119
(
2006
).
102.
G.
Maroulis
,
J. Chem. Phys.
113
,
1813
(
2000
).
103.
G. S.
Tschumper
,
M. L.
Leininger
,
B. C.
Hoffman
,
E. F.
Valeev
,
H. F.
Schaefer
, and
M.
Quack
,
J. Chem. Phys.
116
,
690
(
2002
).
104.
J. K.
Gregory
,
D. C.
Clary
,
K.
Liu
,
M. G.
Brown
, and
R. J.
Saykally
,
Science
275
,
814
(
1997
).
105.
S.
Nachimuthu
,
J. L.
Gao
, and
D. G.
Truhlar
,
Chem. Phys.
400
,
8
(
2012
).
106.
S.
Sadhukhan
,
D.
Munoz
,
C.
Adamo
, and
G. E.
Scuseria
,
Chem. Phys. Lett.
306
,
83
(
1999
).
107.
R.
Kumar
,
R. A.
Christie
, and
K. D.
Jordan
,
J. Phys. Chem. B
113
,
4111
(
2009
).
108.
P.
Goyal
,
M.
Elstner
, and
Q.
Cui
,
J. Phys. Chem. B
115
,
6790
(
2011
).
109.
110.
W. L.
Jorgensen
and
J. D.
Madura
,
Mol. Phys.
56
,
1381
(
1985
).
111.
B. G.
Kyle
,
Chemical and Process Thermodynamics
(
Prentice Hall PTR
,
1999
).
112.
W.
Wagner
and
A.
Pruss
,
J. Phys. Chem. Ref. Data
31
,
387
(
2002
).
113.
L.
Haar
,
E.
Gallagher
, and
G.
Kell
,
NBS/NRC Steam Tables: Thermodynamic and Transport Properties and Computer Programs for Vapor and Liquid States of Water in SI Units
(
Hemisphere Publishing Corporation
,
Washington
,
1984
).
114.
J.
Wang
,
P.
Cieplak
,
Q.
Cai
,
M. J.
Hsieh
,
J. M.
Wang
,
Y.
Duan
, and
R.
Luo
,
J. Phys. Chem. B
116
,
7999
(
2012
).
115.
C. A.
Coulson
and
D.
Eisenberg
,
Proc. R. Soc. London, Ser. A
291
,
445
(
1966
).
116.
J. W.
Caldwell
and
P. A.
Kollman
,
J. Phys. Chem.
99
,
6208
(
1995
).
117.
P. L.
Silvestrelli
and
M.
Parrinello
,
Phys. Rev. Lett.
82
,
3308
(
1999
).
118.
M.
Neumann
,
J. Chem. Phys.
82
,
5663
(
1985
).
119.
J. L.
Aragones
,
L. G.
MacDowell
, and
C.
Vega
,
J. Phys. Chem. A
115
,
5745
(
2011
).
120.
H. E.
Alper
and
R. M.
Levy
,
J. Chem. Phys.
91
,
1242
(
1989
).
121.
J. A.
Barker
and
R. O.
Watts
,
Mol. Phys.
26
,
789
(
1973
).
122.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Oxford University Press
,
Oxford
,
1987
),
123.
S. B.
Zhu
and
C. F.
Wong
,
J. Chem. Phys.
98
,
8892
(
1993
).
124.
M.
Sprik
,
J. Chem. Phys.
95
,
6762
(
1991
).
125.
P.
Hochtl
,
S.
Boresch
,
W.
Bitomsky
, and
O.
Steinhauser
,
J. Chem. Phys.
109
,
4927
(
1998
).
126.
P.
Ren
and
J. W.
Ponder
,
J. Phys. Chem. B
108
,
13427
(
2004
).
128.
H. J. C.
Berendsen
,
J. R.
Grigera
, and
T. P.
Straatsma
,
J. Phys. Chem.
91
,
6269
(
1987
).
129.
G. S.
Kell
,
J. Chem. Eng. Data
20
,
97
(
1975
).
130.
C. A.
Angell
,
M.
Oguni
, and
W. J.
Sichina
,
J. Phys. Chem.
86
,
998
(
1982
).
131.
C.
Vega
,
M. M.
Conde
,
C.
McBride
,
J. L. F.
Abascal
,
E. G.
Noya
,
R.
Ramirez
, and
L. M.
Sese
,
J. Chem. Phys.
132
,
046101
(
2010
).
132.
K.
Krynicki
,
C. D.
Green
, and
D. W.
Sawyer
,
Faraday Discuss.
66
,
199
(
1978
).
133.
S.
Tazi
,
A.
Botan
,
M.
Salanne
,
V.
Marry
,
P.
Turq
, and
B.
Rotenberg
,
J. Phys. Cond. Matter
24
,
284117
(
2012
).
134.
A.
Abragam
,
The Principles of Nuclear Magnetism
(
Clarendon Press
,
Oxford, England
,
1961
),
135.
D. J.
Wilbur
,
T.
Defries
, and
J.
Jonas
,
J. Chem. Phys.
65
,
1783
(
1976
).
136.
J.
Barthel
,
K.
Bachhuber
,
R.
Buchner
, and
H.
Hetzenauer
,
Chem. Phys. Lett.
165
,
369
(
1990
).
137.
138.
T.
Head-Gordon
and
M. E.
Johnson
,
Proc. Nat. Acad. Sci.
103
,
7973
(
2006
).
139.
L. A.
Baez
and
P.
Clancy
,
J. Chem. Phys.
101
,
9837
(
1994
).
140.
B.
Chen
,
J.
Xing
, and
J. I.
Siepmann
,
J. Phys. Chem. B
104
,
2391
(
2000
).
141.
S.
Nose
,
J. Chem. Phys.
81
,
511
(
1984
).
142.
W. G.
Hoover
,
Phys. Rev. A
31
,
1695
(
1985
).
143.
G.
Raabe
and
R. J.
Sadus
,
J. Chem. Phys.
134
,
234501
(
2011
).
144.
K.
Ichikawa
,
Y.
Kameda
,
T.
Yamaguchi
,
H.
Wakita
, and
M.
Misawa
,
Mol. Phys.
73
,
79
(
1991
).
145.
Y.
Mo
and
J.
Gao
,
J. Phys. Chem. B
110
,
2976
(
2006
).
146.
S.
Lifson
,
J. Chim. Phys. Physicochim. Biol.
65
,
40
(
1968
).
147.
M.
Levitt
and
S.
Lifson
,
J. Mol. Biol.
46
,
269
(
1969
).
148.
M.
Levitt
,
Nat. Struct. Biol.
8
,
392
(
2001
).
149.
See supplementary material at http://dx.doi.org/10.1063/1.4816280 for optimized geometries and computed properties for water clusters and proton-water clusters using the PMOw and XP3P method and various ab initio molecular orbital and density functional theory approaches mentioned in the text, and average thermodynamic properties for liquid water at temperature ranging from −40 to 100 °C. In addition, figures depicting optimized structures for water clusters, computed reorientation and molecular dipole time-correlation functions, root-of-mean square displacement, heat capacities, isothermal compressibilities, and radial distributions functions for liquid water are provided.

Supplementary Material

You do not currently have access to this content.