Orbital-optimized coupled-electron pair theory [or simply “optimized CEPA(0),” OCEPA(0), for short] and its analytic energy gradients are presented. For variational optimization of the molecular orbitals for the OCEPA(0) method, a Lagrangian-based approach is used along with an orbital direct inversion of the iterative subspace algorithm. The cost of the method is comparable to that of CCSD [O(N6) scaling] for energy computations. However, for analytic gradient computations the OCEPA(0) method is only half as expensive as CCSD since there is no need to solve the λ2-amplitude equation for OCEPA(0). The performance of the OCEPA(0) method is compared with that of the canonical MP2, CEPA(0), CCSD, and CCSD(T) methods, for equilibrium geometries, harmonic vibrational frequencies, and hydrogen transfer reactions between radicals. For bond lengths of both closed and open-shell molecules, the OCEPA(0) method improves upon CEPA(0) and CCSD by 25%–43% and 38%–53%, respectively, with Dunning's cc-pCVQZ basis set. Especially for the open-shell test set, the performance of OCEPA(0) is comparable with that of CCSD(T) (ΔR is 0.0003 Å on average). For harmonic vibrational frequencies of closed-shell molecules, the OCEPA(0) method again outperforms CEPA(0) and CCSD by 33%–79% and 53%–79%, respectively. For harmonic vibrational frequencies of open-shell molecules, the mean absolute error (MAE) of the OCEPA(0) method (39 cm−1) is fortuitously even better than that of CCSD(T) (50 cm−1), while the MAEs of CEPA(0) (184 cm−1) and CCSD (84 cm−1) are considerably higher. For complete basis set estimates of hydrogen transfer reaction energies, the OCEPA(0) method again exhibits a substantially better performance than CEPA(0), providing a mean absolute error of 0.7 kcal mol−1, which is more than 6 times lower than that of CEPA(0) (4.6 kcal mol−1), and comparing to MP2 (7.7 kcal mol−1) there is a more than 10-fold reduction in errors. Whereas the MAE for the CCSD method is only 0.1 kcal mol−1 lower than that of OCEPA(0). Overall, the present application results indicate that the OCEPA(0) method is very promising not only for challenging open-shell systems but also for closed-shell molecules.

1.
N. C.
Handy
and
H. F.
Schaefer
,
J. Chem. Phys.
81
,
5031
(
1984
).
2.
C. D.
Sherrill
,
A. I.
Krylov
,
E. F. C.
Byrd
, and
M.
Head-Gordon
,
J. Chem. Phys.
109
,
4171
(
1998
).
3.
A. I.
Krylov
,
C. D.
Sherrill
,
E. F. C.
Byrd
, and
M.
Head-Gordon
,
J. Chem. Phys.
109
,
10669
(
1998
).
4.
A. I.
Krylov
,
C. D.
Sherrill
, and
M.
Head-Gordon
,
J. Chem. Phys.
113
,
6509
(
2000
).
5.
S. R.
Gwaltney
,
C. D.
Sherrill
,
M.
Head-Gordon
, and
A. I.
Krylov
,
J. Chem. Phys.
113
,
3548
(
2000
).
6.
T. B.
Pedersen
,
H.
Koch
, and
C.
Hättig
,
J. Chem. Phys.
110
,
8318
(
1999
).
7.
T. B.
Pedersen
,
B.
Fernández
, and
H.
Koch
,
J. Chem. Phys.
114
,
6983
(
2001
).
8.
U.
Bozkaya
,
J. M.
Turney
,
Y.
Yamaguchi
,
H. F.
Schaefer
, and
C. D.
Sherrill
,
J. Chem. Phys.
135
,
104103
(
2011
).
9.
U.
Bozkaya
,
J. Chem. Phys.
135
,
224103
(
2011
).
10.
U.
Bozkaya
and
C. D.
Sherrill
,
J. Chem. Phys.
138
,
184103
(
2013
).
11.
J. F.
Stanton
,
J.
Gauss
, and
R. J.
Bartlett
,
J. Chem. Phys.
97
,
5554
(
1992
).
12.
E. R.
Davidson
and
W. T.
Borden
,
J. Chem. Phys.
87
,
4783
(
1983
).
13.
W. D.
Allen
,
D. A.
Horner
,
R. L.
DeKock
,
R. B.
Remington
, and
H. F.
Schaefer
,
Chem. Phys.
133
,
11
(
1989
).
14.
R. S.
Grev
,
I. L.
Alberts
, and
H. F.
Schaefer
,
J. Phys. Chem.
94
,
3379
(
1990
).
15.
Y.
Xie
,
W. D.
Allen
,
Y.
Yamaguchi
, and
H. F.
Schaefer
,
J. Chem. Phys.
104
,
7615
(
1996
).
16.
N. A.
Burton
,
I. L.
Alberts
,
Y.
Yamaguchi
, and
H. F.
Schaefer
,
J. Phys. Chem.
95
,
7466
(
1991
).
17.
T. D.
Crawford
,
J. F.
Stanton
,
W. D.
Allen
, and
H. F.
Schaefer
,
J. Chem. Phys.
107
,
10626
(
1997
).
18.
P. Y.
Ayala
and
H. B.
Schlegel
,
J. Chem. Phys.
108
,
7560
(
1998
).
19.
N. J.
Russ
,
T. D.
Crawford
, and
G. S.
Tschumper
,
J. Chem. Phys.
120
,
7298
(
2004
).
20.
B.
Mintz
and
T. D.
Crawford
,
Phys. Chem. Chem. Phys.
12
,
15459
(
2010
).
21.
W.
Kurlancheek
and
M.
Head-Gordon
,
Mol. Phys.
107
,
1223
(
2009
).
22.
G. D.
Purvis
and
R. J.
Bartlett
,
J. Chem. Phys.
76
,
1910
(
1982
).
23.
G. E.
Scuseria
and
H. F.
Schaefer
,
Chem. Phys. Lett.
142
,
354
(
1987
).
24.
A.
Köhn
and
J.
Olsen
,
J. Chem. Phys.
122
,
084116
(
2005
).
25.
R. C.
Lochan
and
M.
Head-Gordon
,
J. Chem. Phys.
126
,
164101
(
2007
).
26.
F.
Neese
,
T.
Schwabe
,
S.
Kossmann
,
B.
Schirmer
, and
S.
Grimme
,
J. Chem. Theory Comput.
5
,
3060
(
2009
).
27.
S.
Kossmann
and
F.
Neese
,
J. Phys. Chem. A
114
,
11768
(
2010
).
28.
U.
Bozkaya
and
H. F.
Schaefer
,
J. Chem. Phys.
136
,
204114
(
2012
).
29.
E.
Soydaş
and
U.
Bozkaya
,
J. Chem. Theory Comput.
9
,
1452
(
2013
).
30.
J. B.
Robinson
and
P. J.
Knowles
,
J. Chem. Phys.
138
,
074104
(
2013
).
31.
W.
Kurlancheek
,
K.
Lawler
,
R. C.
Lochan
, and
M.
Head-Gordon
,
J. Chem. Phys.
136
,
054113
(
2012
).
32.
S.
Grimme
,
J. Chem. Phys.
118
,
9095
(
2003
).
33.
S.
Grimme
,
J. Comp. Chem.
24
,
1529
(
2003
).
34.
S.
Grimme
,
WIREs Comput. Mol. Sci.
2
,
886
(
2012
).
35.
M.
Gerenkamp
and
S.
Grimme
,
Chem. Phys. Lett.
392
,
229
(
2004
).
36.
Y.
Jung
,
R. C.
Lochan
,
A. D.
Dutoi
, and
M.
Head-Gordon
,
J. Chem. Phys.
121
,
9793
(
2004
).
37.
W.
Meyer
,
Int. J. Quantum Chem. S.
5
,
341
(
1971
).
38.
W.
Meyer
,
J. Chem. Phys.
58
,
1017
(
1973
).
39.
W.
Meyer
,
Theor. Chim. Acta
35
,
277
(
1974
).
40.
W.
Meyer
, in
Methods of Electronic Structure Theory
, edited by
H. F.
Schaefer
(
Plenum Press
,
New York
,
1977
), p.
413
.
41.
H. J.
Werner
and
W.
Meyer
,
Mol. Phys.
31
,
855
(
1976
).
42.
P.
Rosmus
and
W.
Meyer
,
J. Chem. Phys.
69
,
2745
(
1978
).
43.
R.
Ahlrichs
,
P.
Scharf
, and
C.
Ehrhardt
,
J. Chem. Phys.
82
,
890
(
1985
).
44.
P. R.
Taylor
,
G. B.
Bacskay
,
N. S.
Hush
, and
A. C.
Hurley
,
J. Chem. Phys.
69
,
1971
(
1978
).
45.
P.
Pulay
and
S.
Saebø
,
Chem. Phys. Lett.
117
,
37
(
1985
).
46.
R.
Ahlrichs
,
F.
Driessler
,
H.
Lischka
,
V.
Staemmler
, and
W.
Kutzelnigg
,
J. Chem. Phys.
62
,
1235
(
1975
).
47.
P. R.
Taylor
,
G. B.
Bacskay
,
N. S.
Hush
, and
A. C.
Hurley
,
Chem. Phys. Lett.
41
,
444
(
1976
).
48.
S.
Koch
and
W.
Kutzelnigg
,
Theor. Chim. Acta
59
,
387
(
1981
).
49.
R.
Ahlrichs
,
Comput. Phys. Commun.
17
,
31
(
1979
).
50.
P. R.
Taylor
,
J. Chem. Phys.
74
,
1256
(
1981
).
51.
R.
Ahlrichs
, and
P.
Scharf
, in
Methods of Electronic Structure Theory
, edited by
K. P.
Lawley
(
Wiley
,
New York
,
1987
), Vol.
1
, p.
501
.
52.
C.
Hampel
,
K. A.
Peterson
, and
H. J.
Werner
,
Chem. Phys. Lett.
190
,
1
(
1992
).
53.
F.
Wennmohs
and
F.
Neese
,
Chem. Phys.
343
,
217
(
2008
).
54.
F.
Neese
,
F.
Wennmohs
, and
A.
Hansen
,
J. Chem. Phys.
130
,
114108
(
2009
).
55.
C.
Kollmar
and
F.
Neese
,
Mol. Phys.
108
,
2449
(
2010
).
56.
A. G.
Taube
and
R. J.
Bartlett
,
J. Chem. Phys.
130
,
144112
(
2009
).
57.
R. J.
Bartlett
,
Annu. Rev. Phys. Chem.
32
,
359
(
1981
).
58.
R. J.
Bartlett
and
I.
Shavitt
,
Chem. Phys. Lett.
50
,
190
(
1977
).
59.
R. J.
Bartlett
,
I.
Shavitt
, and
G. D.
Purvis
,
J. Chem. Phys.
71
,
281
(
1979
).
60.
R. J.
Bartlett
and
J.
Noga
,
Chem. Phys. Lett.
150
,
29
(
1988
).
61.
J. M.
Turney
,
A. C.
Simmonett
,
R. M.
Parrish
,
E. G.
Hohenstein
,
F.
Evangelista
,
J. T.
Fermann
,
B. J.
Mintz
,
L. A.
Burns
,
J. J.
Wilke
,
M. L.
Abrams
,
N. J.
Russ
,
M. L.
Leininger
,
C. L.
Janssen
,
E. T.
Seidl
,
W. D.
Allen
,
H. F.
Schaefer
,
R. A.
King
,
E. F.
Valeev
,
C. D.
Sherrill
, and
T. D.
Crawford
,
WIREs Comput. Mol. Sci.
2
,
556
(
2012
).
62.
J. F.
Stanton
,
J.
Gauss
,
J. D.
Watts
, and
R. J.
Bartlett
,
J. Chem. Phys.
94
,
4334
(
1991
).
63.
T. D.
Crawford
and
H. F.
Schaefer
,
Rev. Comput. Chem.
14
,
33
(
2000
).
64.
I.
Shavitt
and
R. J.
Bartlett
,
Many-Body Methods in Chemistry and Physics
, 1st ed. (
Cambridge Press
,
New York
,
2009
), pp.
54
89
.
65.
F. E.
Harris
,
H. J.
Monkhorst
, and
D. L.
Freeman
,
Algebraic and Diagrammatic Methods in Many-Fermion Theory
, 1st ed. (
Oxford Press
,
New York
,
1992
), pp.
88
118
.
66.
T.
Helgaker
and
P.
Jørgensen
,
Adv. Quantum Chem.
19
,
183
(
1988
).
67.
P.
Jørgensen
and
T.
Helgaker
,
J. Chem. Phys.
89
,
1560
(
1988
).
68.
E.
Dalgaard
and
P.
Jørgensen
,
J. Chem. Phys.
69
,
3833
(
1978
).
69.
T.
Helgaker
,
P.
Jørgensen
, and
J.
Olsen
,
Molecular Electronic Structure Theory
, 1st ed. (
John Wiley and Sons
,
New York
,
2000
), pp.
496
504
.
70.
R.
Shepard
,
Adv. Chem. Phys.
69
,
63
(
1987
).
71.
R.
Shepard
, in
Modern Electronic Structure Theory. Part I
, 1st ed.,
Advanced Series in Physical Chemistry
Vol.
2
, edited by
D. R.
Yarkony
(
World Scientific Publishing Company
,
London
,
1995
), pp.
345
458
.
72.
73.
A. P. L.
Rendell
,
G. B.
Backsay
,
N. S.
Hush
, and
N. C.
Handy
,
J. Chem. Phys.
87
,
5976
(
1987
).
74.
M.
Head-Gordon
and
J. A.
Pople
,
J. Phys. Chem.
92
,
3063
(
1988
).
75.
M. T.
Heat
,
Scientific Computing: An Introductory Survey
, 2nd ed. (
McGraw-Hill
,
Boston
,
2002
), pp.
98
101
.
76.
T. U.
Helgaker
and
J.
Almlöf
,
Int. J. Quantum Chem.
26
,
275
(
1984
).
77.
T. U.
Helgaker
, in
Geometrical Derivatives of Energy Surfaces and Molecular Properties
, edited by
P.
Jørgensen
and
J.
Simons
(
Springer/Reidel
,
Dordrecht
,
1986
), pp.
1
16
.
78.
K.
Kristensen
,
P.
Jørgensen
,
B.
Jansík
,
T.
Kjærgaard
, and
S.
Reine
,
J. Chem. Phys.
137
,
114102
(
2012
).
79.
J.
Simons
,
T. U.
Helgaker
, and
P.
Jørgensen
,
Chem. Phys.
86
,
413
(
1984
).
80.
T.
Helgaker
, in
The Encyclopedia of Computational Chemistry
, edited by
P. R.
Schleyer
,
N. L.
Allinger
,
T.
Clark
,
J.
Gasteiger
,
P. A.
Kollman
,
H. F.
Schaefer
, and
P. R.
Schreiner
(
Wiley
,
Chichester
,
1998
), pp.
1157
1169
.
81.
Y.
Yamaguchi
,
Y.
Osamura
,
J. D.
Goddard
, and
H. F.
Schaefer
,
A New Dimension to Quantum Chemistry: Analytic Derivative Methods in Ab Initio Molecular Electronic Structure Theory
(
Oxford University Press
,
New York
,
1994
), pp.
29
52
.
82.
T.
Helgaker
,
P.
Jørgensen
, and
N.
Handy
,
Theor. Chem. Acc.
76
,
227
(
1989
).
83.
T.
Helgaker
and
P.
Jørgensen
,
Theor. Chem. Acc.
75
,
111
(
1989
).
84.
J. E.
Rice
and
R. D.
Amos
,
Chem. Phys. Lett.
122
,
585
(
1985
).
85.
Y.
Yamaguchi
and
H. F.
Schaefer
, in
Handbook of High-Resolution Spectroscopies
, edited by
M.
Quack
and
F.
Merkt
(
John Wiley & Sons
,
2011
), pp.
325
362
.
86.
G. E.
Scuseria
,
C. L.
Janssen
, and
H. F.
Schaefer
,
J. Chem. Phys.
89
,
7382
(
1988
).
87.
K.
Raghavachari
,
G. W.
Trucks
,
J. A.
Pople
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
157
,
479
(
1989
).
88.
P. J.
Knowles
,
C.
Hampel
, and
H.-J.
Werner
,
J. Chem. Phys.
99
,
5219
(
1993
).
89.
H.-J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
,
M.
Schütz
 et al, MOLPRO, version 2010.1, a package of ab initio programs,
2010
, see http://www.molpro.net.
90.
T. H.
Dunning
,
J. Chem. Phys.
90
,
1007
(
1989
).
91.
D. E.
Woon
and
T. H.
Dunning
,
J. Chem. Phys.
103
,
4572
(
1995
).
92.
T.
Helgaker
,
J.
Gauss
,
P.
Jørgensen
, and
J.
Olsen
,
J. Chem. Phys.
106
,
6430
(
1997
).
93.
K. L.
Bak
,
J.
Gauss
,
P.
Jørgensen
,
J.
Olsen
,
T.
Helgaker
, and
J. F.
Stanton
,
J. Chem. Phys.
114
,
6548
(
2001
).
94.
X.
Zhang
,
A. T.
Maccarone
,
M. R.
Nimlos
,
S.
Kato
,
V. M.
Bierbaum
,
G. B.
Ellison
,
B.
Ruscic
,
A. C.
Simmonett
,
W. D.
Allen
, and
H. F.
Schaefer
,
J. Chem. Phys.
126
,
044312
(
2007
).
95.
U.
Bozkaya
,
J. M.
Turney
,
Y.
Yamaguchi
, and
H. F.
Schaefer
,
J. Chem. Phys.
132
,
064308
(
2010
).
96.
U.
Bozkaya
,
J. M.
Turney
,
Y.
Yamaguchi
, and
H. F.
Schaefer
,
J. Chem. Phys.
136
,
164303
(
2012
).
97.
U.
Bozkaya
and
I.
Özkan
,
J. Org. Chem.
77
,
2337
(
2012
).
98.
U.
Bozkaya
and
I.
Özkan
,
J. Phys. Chem. A
116
,
2309
(
2012
).
99.
U.
Bozkaya
and
I.
Özkan
,
J. Phys. Chem. A
116
,
3274
(
2012
).
100.
U.
Bozkaya
and
I.
Özkan
,
J. Org. Chem.
77
,
5714
(
2012
).
101.
U.
Bozkaya
and
I.
Özkan
,
Phys. Chem. Chem. Phys.
14
,
14282
(
2012
).
102.
See supplementary material at http://dx.doi.org/10.1063/1.4816628 for the experimental bond lengths and harmonic vibrational frequencies of closed- and open-shell molecules.
103.
E. F. C.
Byrd
,
C. D.
Sherrill
, and
M.
Head-Gordon
,
J. Phys. Chem. A
105
,
9736
(
2001
).
104.
G. J. O.
Beran
,
S. R.
Gwaltney
, and
M.
Head-Gordon
,
Phys. Chem. Chem. Phys.
5
,
2488
(
2003
).
105.
B.
Temelso
,
C. D.
Sherrill
,
R. C.
Merkle
, and
R. A.
Freitas
,
J. Phys. Chem. A
110
,
11160
(
2006
).
106.
D.
Feller
,
J. Chem. Phys.
98
,
7059
(
1993
).
107.
T.
Helgaker
,
W.
Klopper
,
H.
Koch
, and
J.
Noga
,
J. Chem. Phys.
106
,
9639
(
1997
).
108.
A.
Halkier
,
T.
Helgaker
,
P.
Jørgensen
,
W.
Klopper
, and
J.
Olsen
,
Chem. Phys. Lett.
302
,
437
(
1999
).
109.
A. C.
Scheiner
,
G. E.
Scuseria
,
J. E.
Rice
,
T. J.
Lee
, and
H. F.
Schaefer
,
J. Chem. Phys.
87
,
5361
(
1987
).
110.
E. A.
Salter
,
G. W.
Trucks
, and
R. J.
Bartlett
,
J. Chem. Phys.
90
,
1752
(
1989
).

Supplementary Material

You do not currently have access to this content.