We have performed simulations of the model of infinitely thin rigid rods undergoing rotational and translational diffusion, subject to the restriction that no two rods can cross one another, for various concentrations well into the semidilute regime. We used a modification of the algorithm of Doi et al [J. Phys. Soc. Jpn. 53, 3000 (1984)] https://doi.org/10.1143/JPSJ.53.3000 that simulates diffusive dynamics using a Monte Carlo method and a nonzero time step. In the limit of zero time step, this algorithm is an exact description of diffusive dynamics subject to the noncrossing restriction. For a wide range of concentrations in the semidilute regime, we report values of the long time rotational diffusion constant of the rods, extrapolated to the limit of zero time step, for various sets of values of the infinite dilution (bare) diffusion constants. These results are compared with the results of a previous simulation of the model by Doi et al. and of previous simulations of rods with finite aspect ratio by Fixman and by Cobb and Butler that had been extrapolated to the limit of infinitely thin rods. The predictions of the Doi-Edwards (DE) scaling law do not hold for this model for the concentrations studied. The simulation data for the model display two deviations from the predictions of the DE theory that have been observed in experimental systems in the semidilute regime, namely, the very slow approach toward DE scaling behavior as the concentration is increased and the large value of the prefactor in the DE scaling law. We present a modified scaling principle for this model that is consistent with the simulation results for a broad range of concentrations in the semidilute regime. The modified scaling principle takes into account two physical effects, which we call “leakage” and “drift,” that were found to be important for the transport properties of a simpler model of nonrotating rods on a lattice [Y.-L. S. Tse and H. C. Andersen, J. Chem. Phys. 136, 024904 (2012)] https://doi.org/10.1063/1.3673791.
Skip Nav Destination
Article navigation
28 July 2013
Research Article|
July 24 2013
Modified scaling principle for rotational relaxation in a model for suspensions of rigid rods
Ying-Lung Steve Tse;
Ying-Lung Steve Tse
a)
Department of Chemistry,
Stanford University
, Stanford, California 94305, USA
Search for other works by this author on:
Hans C. Andersen
Hans C. Andersen
b)
Department of Chemistry,
Stanford University
, Stanford, California 94305, USA
Search for other works by this author on:
a)
Current address: Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA.
b)
Author to whom correspondence should be addressed. Electronic mail: hca@stanford.edu
J. Chem. Phys. 139, 044905 (2013)
Article history
Received:
January 14 2013
Accepted:
July 04 2013
Citation
Ying-Lung Steve Tse, Hans C. Andersen; Modified scaling principle for rotational relaxation in a model for suspensions of rigid rods. J. Chem. Phys. 28 July 2013; 139 (4): 044905. https://doi.org/10.1063/1.4816001
Download citation file:
Sign in
Don't already have an account? Register
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Pay-Per-View Access
$40.00
Citing articles via
DeePMD-kit v2: A software package for deep potential models
Jinzhe Zeng, Duo Zhang, et al.