It has recently been shown [D. Adil and S. Guha, J. Phys. Chem. C116, 12779 (2012)]

that a large enhancement in the Raman intensity due to surface-enhanced Raman scattering (SERS) is observed from pentacene when probed through the Au contact in organic field-effect transistors (OFET) structures. Here, the SERS spectrum is shown to exhibit a high sensitivity to disorder introduced in the pentacene film by Au atoms. The Raman signature of the metal-semiconductor interface in pentacene OFETs is calculated with density-functional theory by explicitly considering the Au-pentacene interaction. The observed enhancement in the 1380 cm−1 and the 1560 cm−1 regions of the experimental Raman spectrum of pentacene is successfully modeled by Au-pentacene complexes, giving insights into the nature of disorder in the pentacene sp2 network. Finally, we extend our previous work on high-operating voltage pentacene OFETs to low-operating voltage pentacene OFETs. No changes in the SERS spectra before and after subjecting the OFETs to a bias stress are observed, concurrent with no degradation in the threshold voltage. This shows that bias stress induced performance degradation is, in part, caused by field-induced structural changes in the pentacene molecule. Thus, we confirm that the SERS spectrum can be used as a visualization tool for correlating transport properties to structural changes, if any, in organic semiconductor based devices.

1.
V. V.
Butko
,
X.
Chi
,
D. V.
Lang
, and
A. P.
Ramirez
,
Appl. Phys. Lett.
83
,
4773
(
2003
).
2.
T.
Okamoto
,
M. L.
Senatore
,
M.-M.
Ling
,
A. B.
Mallik
,
M. L.
Tang
, and
Z.
Bao
,
Adv. Mater.
19
,
3381
(
2007
).
3.
N. B.
Ukah
,
J.
Granstrom
,
R. R.
Sanganna Gari
,
G. M.
King
, and
S.
Guha
,
Appl. Phys. Lett.
99
,
243302
(
2011
).
4.
R. J.
Davis
and
J. E.
Pemberton
,
J. Phys. Chem. C
112
,
4364
(
2008
).
5.
R. J.
Davis
and
J. E.
Pemberton
,
J. Am. Chem. Soc.
131
,
10009
(
2009
).
6.
G.
Salvan
,
Y.
Sakurai
,
A. Y.
Kobitski
,
R.
Scholz
,
S.
Astilean
,
T. U.
Kampen
,
D. R. T.
Zahn
,
H.
Ishii
, and
K.
Seki
,
Appl. Surf. Sci.
190
,
371
(
2002
).
7.
K.
Seto
and
Y.
Furukawa
,
J. Raman Spectrosc.
43
,
2015
(
2012
).
8.
M.
Moskovits
,
Rev. Mod. Phys.
57
,
783
(
1985
).
9.
K.
Kneipp
,
H.
Kneipp
,
I.
Itzkan
,
R. R.
Dasari
, and
M. S.
Feld
,
J. Phys.: Condens. Matter
14
,
R597
(
2002
).
10.
D.
Adil
and
S.
Guha
,
J. Phys. Chem. C
116
,
12779
(
2012
).
11.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
 et al, GAUSSIAN 09, Revision B.01, Gaussian, Inc., Wallingford, CT,
2009
.
12.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
13.
P. J.
Hay
and
W. R.
Wadt
,
J. Chem. Phys.
82
,
299
(
1985
).
14.
Y.
Yang
,
M. N.
Weaver
, and
K. M.
Merz
 Jr.
,
J. Phys. Chem. A
113
,
9843
(
2009
).
15.
See supplementary material at http://dx.doi.org/10.1063/1.4816817 for AFM image, Raman spectrum calculation of pentacene, and Raman maps of low-operating voltage OFETs.
16.
R. E.
Oakes
,
S. E. J.
Bell
,
Z.
Benkova
, and
A. J.
Sadlej
,
J. Comput. Chem.
26
,
154
(
2005
).
17.
C.
Volz
,
M.
Arif
, and
S.
Guha
,
J. Chem. Phys.
126
,
064905
(
2007
).
18.
D.
Porezag
and
M. R.
Pederson
,
Phys. Rev. B
54
,
7830
(
1996
).
19.
S.
Guha
,
J.
Menéndez
,
J. B.
Page
, and
G. B.
Adams
,
Phys. Rev. B
56
,
15431
(
1997
).
20.
J. E.
Northrup
,
M. L.
Tiago
, and
S. G.
Louie
,
Phys. Rev. B
66
,
121404
(
2002
).
21.
N. J.
Watkins
and
Y.
Gao
,
J. Appl. Phys.
94
,
1289
(
2003
).
22.
S.
Yoo
,
B.
Domercq
, and
B.
Kippelen
,
Appl. Phys. Lett.
85
,
5427
(
2004
).
23.
P. M.
Sanchez
,
A. J.
Cohen
, and
W.
Yang
,
Phys. Rev. Lett.
100
,
146401
(
2008
).
24.
H. L.
Cheng
,
W. Y.
Chou
,
C. W.
Kuo
,
Y. W.
Wang
,
Y. S.
Mai
,
F. C.
Tang
, and
S. W.
Chu
,
Adv. Funct. Mater.
18
,
285
(
2008
).
25.
Y.
Yamakita
,
J.
Kimura
, and
K.
Ohno
,
J. Chem. Phys.
126
,
064904
(
2007
).
26.
N.
Abasbegovic
,
N.
Vokutic
, and
L.
Colombo
,
J. Chem. Phys.
41
,
2575
(
1964
).
27.
I.
Stenger
,
A.
Frigout
,
D.
Tondlier
,
B.
Geoffroy
,
R.
Ossikovski
, and
Y.
Bonnassieux
,
Appl. Phys. Lett.
94
,
133301
(
2009
).
28.
R.
He
,
N. G.
Tassi
,
G. B.
Blanchet
, and
A.
Pinczuk
,
Appl. Phys. Lett.
94
,
223310
(
2009
).
29.
M. S.
Dresselhaus
,
M. A.
Pimenta
,
P. C.
Eklund
, and
G.
Dresselhaus
,
Raman Scattering in Materials Science
,
Springer Series in Materials Science
Vol.
42
, edited by
W. H.
Weber
and
R.
Merlin
(
Springer
,
New York
,
2000
), p.
314
.
30.
H. L.
Cheng
,
W. S.
Mai
,
W. Y.
Chou
, and
L. R.
Chang
,
Appl. Phys. Lett.
90
,
171926
(
2007
).
31.
S. M.
Sze
,
Physics of Semiconductor Devices
, 2nd ed. (
Wiley Interscience
,
New York
,
1981
).
32.
C. S.
Kim
,
S.
Lee
,
E. D.
Gomez
, and
J. E.
Anthony
,
Appl. Phys. Lett.
93
,
103302
(
2008
).
33.
L. L.
Chua
,
J.
Zaumseil
,
J. F.
Chang
,
E. C. W.
Ou
,
P. K. H.
Ho
,
H.
Sirringhaus
, and
R. H.
Friend
,
Nature
434
,
194
(
2005
).
34.
H.
Sirringhaus
,
Adv. Mater.
21
,
3859
(
2009
).
35.
I.
Gierz
,
T.
Suzuki
,
R. T.
Weitz
,
D. S.
Lee
,
B.
Krauss
,
C.
Riedl
,
U.
Starke
,
H.
Höchst
,
J. H.
Smet
,
C. R.
Ast
, and
K.
Kern
,
Phys. Rev. B
81
,
235408
(
2010
).

Supplementary Material

You do not currently have access to this content.