The interaction of atomic hydrogen with the Cu(111) surface was studied by a combined experimental-theoretical approach, using infrared reflection absorption spectroscopy, temperature programmed desorption, and density functional theory (DFT). Adsorption of atomic hydrogen at 160 K is characterized by an anti-absorption mode at 754 cm−1 and a broadband absorption in the IRRA spectra, related to adsorption of hydrogen on three-fold hollow surface sites and sub-surface sites, and the appearance of a sharp vibrational band at 1151 cm−1 at high coverage, which is also associated with hydrogen adsorption on the surface. Annealing the hydrogen covered surface up to 200 K results in the disappearance of this vibrational band. Thermal desorption is characterized by a single feature at ∼295 K, with the leading edge at ∼250 K. The disappearance of the sharp Cu-H vibrational band suggests that with increasing temperature the surface hydrogen migrates to sub-surface sites prior to desorption from the surface. The presence of sub-surface hydrogen after annealing to 200 K is further demonstrated by using CO as a surface probe. Changes in the Cu-H vibration intensity are observed when cooling the adsorbed hydrogen at 180 K to 110 K, implying the migration of hydrogen. DFT calculations show that the most stable position for hydrogen adsorption on Cu(111) is on hollow surface sites, but that hydrogen can be trapped in the second sub-surface layer.

1.
I.
Chorkendorff
and
H.
Niemantsverdriet
,
Concepts of Modern Catalysis and Kinetics
(
Wiley-VCH, Weinheim
,
Germany
,
2003
).
2.
C. N.
Satterfield
,
Heterogeneous Catalysis in Industrial Practice
, 2nd ed. (
Krieger Publishing Company
,
Malabar, FL
,
1996
).
3.
Hydrogen in Metals II: Application-Oriented Properties
, edited by
G.
Alefeld
and
J.
Völkl
(
Springer-Verlag
,
Berlin
,
1978
).
4.
M.
Behrens
,
F.
Studt
,
I.
Kasatkin
,
S.
Kuhl
,
M.
Havecker
,
F.
Abild-Pedersen
,
S.
Zander
,
F.
Girgsdies
,
P.
Kurr
,
B. L.
Kniep
,
M.
Tovar
,
R. W.
Fischer
,
J. K.
Norskov
, and
R.
Schlogl
,
Science
336
,
893
897
(
2012
).
5.
K.
Mudiyanselage
,
S. D.
Senanayake
,
L.
Feria
,
S.
Kundu
,
A. E.
Baber
,
J.
Graciani
,
A. B.
Vidal
,
S.
Agnoli
,
J.
Evans
,
R.
Chang
,
S.
Axnanda
,
Z.
Liu
,
J. F.
Sanz
,
P.
Liu
,
J. A.
Rodriguez
, and
D. J.
Stacchiola
,
Angew. Chem., Int. Ed.
52
,
5101
5105
(
2013
).
6.
A. A.
Peterson
,
F.
Abild-Pedersen
,
F.
Studt
,
J.
Rossmeisl
, and
J. K.
Norskov
,
Energy Environ. Sci.
3
,
1311
1315
(
2010
).
7.
P.
Ferrin
,
S.
Kandoi
,
A. U.
Nilekar
, and
M.
Mavrikakis
,
Surf. Sci.
606
,
679
689
(
2012
).
8.
A. D.
Jewell
,
G. W.
Peng
,
M. F. G.
Mattera
,
E. A.
Lewis
,
C. J.
Murphy
,
G.
Kyriakou
,
M.
Mavrikakis
, and
E. C. H.
Sykes
,
ACS Nano
6
,
10115
10121
(
2012
).
9.
G.
Lee
and
E. W.
Plummer
,
Surf. Sci.
498
,
229
236
(
2002
).
10.
C. L. A.
Lamont
,
B. N. J.
Persson
, and
G. P.
Williams
,
Chem. Phys. Lett.
243
,
429
434
(
1995
).
11.
F.
Greuter
and
E. W.
Plummer
,
Solid State Commun.
48
,
37
41
(
1983
).
12.
M. F.
Luo
,
D. A.
MacLaren
,
I. G.
Shuttleworth
, and
W.
Allison
,
Chem. Phys. Lett.
381
,
654
659
(
2003
).
13.
T.
Kammler
and
J.
Kuppers
,
J. Chem. Phys.
111
,
8115
8123
(
1999
).
14.
M. F.
Luo
,
D. A.
MacLaren
, and
W.
Allison
,
Surf. Sci.
586
,
109
114
(
2005
).
15.
S.
Caratzoulas
,
B.
Jackson
, and
M.
Persson
,
J. Chem. Phys.
107
,
6420
6431
(
1997
).
16.
C. T.
Rettner
,
Phys. Rev. Lett.
69
,
383
386
(
1992
).
17.
G.
Lee
,
D. B.
Poker
,
D. M.
Zehner
, and
E. W.
Plummer
,
Surf. Sci.
357–358
,
717
720
(
1996
).
18.
E. M.
McCash
,
S. F.
Parker
,
J.
Pritchard
, and
M. A.
Chesters
,
Surf Sci.
215
,
363
377
(
1989
).
19.
P. B.
Lloyd
,
M.
Swaminathan
,
J. W.
Kress
, and
B. J.
Tatarchuk
,
Appl. Surf. Sci.
119
,
267
274
(
1997
).
20.
G.
Anger
,
A.
Winkler
, and
K. D.
Rendulic
,
Surf. Sci.
220
,
1
17
(
1989
).
21.
K.
Gundersen
,
B.
Hammer
,
K. W.
Jacobsen
,
J. K.
Nørskov
,
J. S.
Lin
, and
V.
Milman
,
Surf. Sci.
285
,
27
30
(
1993
).
22.
J.
Strömquist
,
L.
Bengtsson
,
M.
Persson
, and
B.
Hammer
,
Surf. Sci.
397
,
382
394
(
1998
).
23.
K.
Nobuhara
,
H.
Nakanishi
,
H.
Kasai
, and
A.
Okiji
,
Surf. Sci.
493
,
271
277
(
2001
).
24.
J.
Greeley
and
M.
Mavrikakis
,
J. Phys. Chem. B
109
,
3460
3471
(
2005
).
25.
M. F.
Luo
,
G. R.
Hu
, and
M. H.
Lee
,
Surf. Sci.
601
,
1461
1466
(
2007
).
26.
M. F.
Luo
and
G. R.
Hu
,
Surf. Sci.
603
,
1081
1086
(
2009
).
27.
K.
Nobuhara
,
H.
Nakanishi
,
H.
Kasai
, and
A.
Okiji
,
J. Appl. Phys.
88
,
6897
6901
(
2000
).
28.
K.
Nobuhara
,
H.
Kasai
,
H.
Nakanishi
, and
W. A.
Dino
,
J. Appl. Phys.
96
,
5020
5025
(
2004
).
29.
J. L.
Nie
,
H. Y.
Xiao
, and
X. T.
Zu
,
Chem. Phys.
321
,
48
54
(
2006
).
30.
K.
Christmann
,
Surf. Sci. Rep.
9
,
1
163
(
1988
).
31.
W.
Eberhardt
,
F.
Greuter
, and
E. W.
Plummer
,
Phys. Rev. Lett.
46
,
1085
1088
(
1981
).
32.
G. E.
Gdowski
,
T. E.
Felter
, and
R. H.
Stulen
,
Surf. Sci. Lett.
181
,
L147
L155
(
1987
).
33.
D. E.
Jiang
and
E. A.
Carter
,
Surf. Sci.
547
,
85
98
(
2003
).
34.
J. T.
Yates
 Jr.
,
C. H. F.
Peden
,
J. E.
Houston
, and
D. W.
Goodman
,
Surf. Sci.
160
,
37
45
(
1985
).
35.
R.
Löber
and
D.
Hennig
,
Phys. Rev. B
55
,
4761
4765
(
1997
).
36.
D.
Stacchiola
and
W. T.
Tysoe
,
Surf. Sci.
540
,
L600
L604
(
2003
).
37.
R. J.
Behm
,
V.
Penka
,
M. G.
Cattania
,
K.
Christmann
, and
G.
Ertl
,
J. Chem. Phys.
78
,
7486
7490
(
1983
).
38.
Y. J.
Chabal
,
Phys. Rev. Lett.
55
,
845
848
(
1985
).
39.
J. E.
Reutt
,
Y. J.
Chabal
, and
S. B.
Christman
,
J. Electron. Spectrosc. Relat. Phenom.
44
,
325
332
(
1987
).
40.
J. E.
Reutt
,
Y. J.
Chabal
, and
S. B.
Christman
,
Phys. Rev. B
38
,
3112
3132
(
1988
).
41.
J.
Hrbek
,
F. M.
Hoffmann
,
J. B.
Park
,
P.
Liu
,
D.
Stacchiola
,
Y. S.
Hoo
,
S.
Ma
,
A.
Nambu
,
J. A.
Rodriguez
, and
M. G.
White
,
J. Am. Chem. Soc.
130
,
17272
17273
(
2008
).
42.
B.
Delley
,
J. Chem. Phys.
92
,
508
517
(
1990
).
43.
B.
Delley
,
J. Chem. Phys.
113
,
7756
7764
(
2000
).
44.
J. P.
Perdew
,
J. A.
Chevary
,
S. H.
Vosko
,
K. A.
Jackson
,
M. R.
Pederson
,
D. J.
Singh
, and
C.
Fiolhais
,
Phys. Rev. B
46
,
6671
(
1992
).
45.
H. J.
Monkhorst
and
J. D.
Pack
,
Phys. Rev. B
13
,
5188
(
1976
).
46.
C. J.
Hirschmugl
,
G. P.
Williams
,
F. M.
Hoffmann
, and
Y. J.
Chabal
,
Phys. Rev. Lett.
65
,
480
483
(
1990
).
47.
B. N. J.
Persson
,
Phys. Rev. B
44
,
3277
3296
(
1991
).
48.
B. N. J.
Persson
and
A. I.
Volokitin
,
Surf. Sci.
310
,
314
336
(
1994
).
49.
50.
A. D.
Johnson
,
K. J.
Maynard
,
S. P.
Daley
,
Q. Y.
Yang
, and
S. T.
Ceyer
,
Phys. Rev. Lett.
67
,
927
930
(
1991
).
51.
J. G.
Love
,
S.
Haq
, and
D. A.
King
,
J. Chem. Phys.
97
,
8789
8797
(
1992
).
52.
P.
Hollins
and
J.
Pritchard
,
Surf. Sci.
89
,
486
495
(
1979
).
53.
K.
Mudiyanselage
,
W.
An
,
F.
Yang
,
P.
Liu
, and
D. J.
Stacchiola
,
Phys. Chem. Chem. Phys.
15
,
10726
10731
(
2013
).
54.
H.
Pfnür
,
D.
Menzel
,
F. M.
Hoffmann
,
A.
Ortega
, and
A. M.
Bradshaw
,
Surf. Sci.
93
,
431
452
(
1980
).
55.
I.
Chorkendorff
and
P. B.
Rasmussen
,
Surf. Sci.
248
,
35
44
(
1991
).
You do not currently have access to this content.