Terahertz infrared absorption spectra of the α and γ polymorphs of 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX) were predicted using two different theoretical approaches based on molecular dynamics simulations. The thermodynamic conditions studied were T = 298 K and hydrostatic pressures P = 0.0, 1.0, and 2.0 GPa for α-RDX and P = 3.0, 5.2, and 7.0 GPa for γ-RDX. The spectra obtained using the two methods are similar but not identical. In the case of α-RDX for pressure P = 0.0 GPa both spectra agree reasonably well with experimental data. The predicted spectra for α-RDX exhibit red-shifting (mode softening) of the main absorption peak with increasing pressure while for γ-RDX the spectra exhibit overall blue-shifting with increasing pressure.

1.
A. G.
Davies
,
A. D.
Burnett
,
W.
Fan
,
E. H.
Linfield
, and
J. E.
Cunningham
,
Mater. Today
11
,
18
(
2008
).
2.
J.
Chen
,
Y.
Chen
,
H.
Zhao
,
G. J.
Bastiaans
, and
X. C.
Zhang
,
Opt. Express
15
,
12060
(
2007
).
3.
J. A.
Ciezak
,
T. A.
Jenkins
,
Z.
Liu
, and
R. J.
Hemley
,
J. Phys. Chem. A
111
,
59
(
2007
).
4.
D. M.
Dattelbaum
, private communication (
2012
).
5.
A.
Pereverzev
and
T. D.
Sewell
,
Chem. Phys. Lett.
515
,
32
(
2011
).
6.
C. S.
Choi
and
E.
Prince
,
Acta Crystallogr. B
28
,
2857
(
1972
).
7.
P.
Hakey
,
W.
Ouellette
,
J.
Zubieta
, and
T.
Korter
,
Acta Crystallogr. E
64
,
o1428
(
2008
).
8.
B.
Olinger
,
B.
Roof
, and
H.
Cady
, in
Proceedings of International Symposium on High Dynamic Pressures
(
Commissariat a l’Energie Atomique
,
Paris, France
,
1978
), p.
3
.
9.
M.
Nicol
,
J. C.
Oxley
, and
B. J.
Baer
,
High Press. Res.
4
,
505
(
1990
).
10.
A. J.
Davidson
,
I. D. H.
Oswald
,
D. H.
Francis
,
A. R.
Lennie
,
W. G.
Marshall
,
D. I. A.
Millar
,
C. R.
Pulham
,
J. E.
Warren
, and
A. S.
Cumming
,
Cryst. Eng. Comm.
10
,
162
(
2008
).
11.
D. I. A.
Millar
,
I. D. H.
Oswald
,
D. J.
Francis
,
W. G.
Marshall
,
C. R.
Pulham
, and
A. S.
Cumming
,
Chem. Commun.
5
,
562
(
2009
).
12.
D. I. A.
Millar
,
I. D. H.
Oswald
,
C.
Barry
,
D. J.
Francis
,
W. G.
Marshall
,
C. R.
Pulham
, and
A. S.
Cumming
,
Chem. Commun.
46
,
5662
(
2010
).
13.
M. R.
Leahy-Hoppa
,
M. J.
Fitch
,
X.
Zheng
,
L. M.
Hayden
, and
R.
Osiander
,
Chem. Phys. Lett.
434
,
227
(
2007
).
14.
M. W.
Burke
, Lawrence Livermore National Lab Engineering Research and Technology Report FY2007, see https://www-eng.llnl.gov/pdfs/meas_tech_explosives.pdf.
15.
C.
Konek
,
J.
Wilkinson
,
O.
Esenturk
,
E.
Heilweil
, and
M.
Kemp
,
Proc. SPIE
7311
,
73110K
(
2009
).
16.
H.-B.
Liu
,
Y.
Chen
,
G. J.
Bastiaans
, and
X.-C.
Zhang
,
Opt. Express
14
,
415
(
2006
).
17.
Y. C.
Shen
,
T.
Lo
,
P. F.
Taday
,
B. E.
Cole
,
W. R.
Tribe
, and
M. C.
Kemp
,
Appl. Phys. Lett.
86
,
241116
(
2005
).
18.
A. D.
Burnett
,
W. H.
Fan
,
P. C.
Upadhya
,
J. E.
Cunningham
,
H. G. M.
Edwards
,
J.
Kendric
,
T.
Munshi
,
M. D.
Hargreaves
,
E. H.
Linfield
, and
A. G.
Davies
,
Proc. SPIE
6549
,
654905
(
2007
).
19.
Z. A.
Dreger
,
J. E.
Patterson
, and
Y. M.
Gupta
,
J. Phys.: Conf. Ser.
121
,
042012
(
2008
).
20.
M. S.
Miao
,
Z. A.
Dreger
,
J. M.
Winey
, and
Y. M.
Gupta
,
J. Phys. Chem. A
112
,
12228
(
2008
).
21.
S.
Hunter
,
T.
Sutinen
,
S. F.
Parker
,
C. A.
Morrison
,
D. M.
Williamson
,
S.
Thompson
,
P. J.
Gould
, and
C. R.
Pulham
,
J. Phys. Chem. C
117
,
8062
(
2013
).
22.
F.
Shimojo
,
Z.
Wu
,
A.
Nakano
,
R. K.
Kalia
, and
P.
Vashishta
,
J. Chem. Phys.
132
,
094106
(
2010
).
23.
D. G.
Allis
,
J. A.
Zeitler
,
P. F.
Taday
, and
T. M.
Korter
,
Chem. Phys. Lett.
463
,
84
(
2008
).
24.
W. F.
Perger
,
W.
Slough
,
L.
Valenzano
, and
K. M.
Flurchick
,
AIP Conf. Proc.
1426
,
571
(
2012
).
25.
K. M.
Flurchick
,
W. F.
Perger
,
W.
Slough
, and
L.
Valenzano
,
AIP Conf. Proc.
1426
,
567
(
2012
).
26.
J. A.
Ciezak
and
S. F.
Trevino
,
J. Phys. Chem. A
110
,
5149
(
2006
).
27.
B.
Kraczek
and
P. W.
Chung
,
J. Chem. Phys.
138
,
074505
(
2013
).
28.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
).
29.
S.
Grimme
,
J. Comput. Chem.
25
,
1463
(
2004
).
30.
A.
Pereverzev
and
T. D.
Sewell
,
J. Chem. Phys.
134
,
014513
(
2011
).
31.
A.
Pereverzev
and
T. D.
Sewell
,
J. Chem. Phys.
134
,
244502
(
2011
).
32.
A.
Pereverzev
and
T. D.
Sewell
,
AIP Conf. Proc.
1426
,
1187
(
2012
).
33.
S. J.
Plimpton
,
J. Comput. Phys.
117
,
1
(
1995
).
34.
See http://lammps.sandia.gov for LAMMPS.
35.
G. D.
Smith
and
R. K.
Bharadwaj
,
J. Phys. Chem. B
103
,
3570
(
1999
).
36.
M. J.
Cawkwell
,
K. J.
Ramos
,
D. E.
Hooks
, and
T. D.
Sewell
,
J. Appl. Phys.
107
,
063512
(
2010
).
37.
K. J.
Ramos
,
D. E.
Hooks
,
T. D.
Sewell
, and
M. J.
Cawkwell
,
J. Appl. Phys.
108
,
066105
(
2010
).
38.
D.
Bedrov
,
J. B.
Hooper
,
G. D.
Smith
, and
T. D.
Sewell
,
J. Chem. Phys.
131
,
034712
(
2009
).
39.
M. J.
Cawkwell
,
T. D.
Sewell
,
L.
Zheng
, and
D. L.
Thompson
,
Phys. Rev. B
78
,
014107
(
2008
).
40.
L. B.
Munday
,
P. W.
Chung
,
B. M.
Rice
, and
S. D.
Solares
,
J. Phys. Chem. B
115
,
4378
(
2011
).
41.
H.
Kuzmany
,
Solid-State Spectroscopy
(
Springer-Verlag
,
Berlin
,
1998
).
42.
In Refs. 5, 30, and 31, we used an incorrect expression for the line widths, namely |$\gamma _i = \frac{1}{{4\pi c\tau _i }}$|γi=14πcτi. As a result, the calculated line widths reported in those references should be multiplied by a factor of 2.
43.
D. A.
McQuarrie
,
Statistical Mechanics
(
University Science Books
,
Sausalito, CA
,
2000
), p.
473
.
44.
K.
Rao
and
P.
Yip
,
Discrete Cosine Transform: Algorithms, Advantages, Applications
(
Academic Press
,
Boston
,
1990
).
45.
R.
Ramírez
,
T.
López-Cuidad
,
P.
Kumar
, and
D.
Marx
,
J. Chem. Phys.
121
,
3973
(
2004
).
46.
See supplementary material at http://dx.doi.org/10.1063/1.4813795 for animations of several THz-active modes of α- and γ-RDX with high absorption intensities.
47.
B. J.
Baer
and
E. L.
Chronister
,
J. Phys. Chem.
99
,
7324
(
1995
).
48.
K. A.
Velizhanin
,
S.
Kilina
,
T. D.
Sewell
, and
A.
Piryatinski
,
J. Phys. Chem. B
112
,
13252
(
2008
).

Supplementary Material

You do not currently have access to this content.