The objective of this paper is to correct an error in analyses of quasielastic scattering spectra. The error invokes a valid calculation under conditions in which its primary assumptions are incorrect, which results in misleading interpretations of spectra. Quasielastic scattering from dilute probes yields the incoherent structure factor g(1s)(q, t) = ⟨exp (iqΔx(t))⟩, with q being the magnitude of the scattering vector q and Δx(t) being the probe displacement parallel to q during a time interval t. The error is a claim that g(1s)(q, t) ∼ exp (−q2⟨(Δx(t))2⟩/2) for probes in an arbitrary solution, leading to the incorrect belief that ⟨(Δx(t))2⟩ of probes in complex fluids can be inferred from quasielastic scattering. The actual theoretical result refers only to monodisperse probes in simple Newtonian liquids. In general, g(1s)(q, t) is determined by all even moments ⟨(Δx(t))2n⟩, n = 1, 2, 3, … of the displacement distribution function Px, t). Correspondingly, ⟨(Δx(t))2⟩ cannot in general be inferred from g(1s) (q, t). The theoretical model that ties g(1s)(q, t) to ⟨(Δx(t))2also quantitatively determines exactly how ⟨(Δx(t))2⟩/2) must behave, namely, ⟨(Δx(t))2⟩ must increase linearly with t. If the spectrum is not a single exponential in time, g(1s)(q, t) does not determine ⟨(Δx(t))2⟩.

1.
G. D. J.
Phillies
,
Anal. Chem.
62
,
1049A
(
1990
).
2.
F. R.
Hallett
and
A. L.
Gray
,
Biochim. Biophys. Acta
343
,
648
(
1974
).
3.
D. N.
Turner
and
F. R.
Hallett
,
Biochem. Biophys. Acta
451
,
305
(
1976
).
4.
G. D. J.
Phillies
,
Phenomenology of Polymer Solution Dynamics
(
Cambridge University Press
,
Cambridge
,
2011
), Chap. 9.
5.
G. D. J.
Phillies
,
J. Phys. Chem.
85
,
2838
(
1981
).
6.
T.-H.
Lin
,
Makromol. Chem.
187
,
1189
(
1986
).
7.
C. F.
Schmidt
,
M.
Baermann
,
G.
Isenberg
, and
E.
Sackmann
,
Macromolecules
22
,
3638
(
1989
).
8.
G. D. J.
Phillies
,
J.
Stott
, and
S. Z.
Ren
,
J. Phys. Chem.
97
,
11563
(
1993
).
9.
K.
Ullmann
,
G. S.
Ullmann
, and
G. D. J.
Phillies
,
J. Colloids Interface Sci.
105
,
315
(
1985
).
10.
K.
Luby-Phelps
,
P. E.
Castle
,
D. L.
Taylor
, and
F.
Lanni
,
Proc. Natl. Acad. Sci. U.S.A.
84
,
4910
(
1987
).
11.
S. B.
Dierker
,
R.
Pindak
,
R. M.
Fleming
,
I. K.
Robinson
, and
L.
Berman
,
Phys. Rev. Lett.
75
,
449
(
1995
).
12.
D.
Magde
,
E. L.
Elson
, and
W. W.
Webb
,
Phys. Rev. Lett.
29
,
705
(
1972
).
13.
G. D. J.
Phillies
,
Biopolymers
14
,
499
(
1975
).
14.
B. A.
Scalettar
,
J. E.
Hearst
, and
M. P.
Klein
,
Macromolecules
22
,
4550
(
1989
).
15.
T. G.
Mason
,
H.
Gang
, and
D. A.
Weitz
,
J. Mol. Struct.
383
,
81
(
1996
).
16.
G. D. J.
Phillies
,
Electrophoresis
33
,
1008
(
2012
).
17.
T. C.
Laurent
,
I.
Bjork
,
A.
Pietruszkiewicz
, and
H.
Persson
,
Biochim. Biophys. Acta
78
,
351
(
1963
);
[PubMed]
T. C.
Laurent
and
H.
Persson
,
Biochim. Biophys. Acta
83
,
141
(
1964
).
[PubMed]
18.
X.
Ye
,
P.
Tong
, and
L. J.
Fetters
,
Macromolecules
31
,
6534
(
1998
).
19.
L. A.
Hough
and
H. D.
Ou-Yang
,
J. Nanopart. Res.
1
,
495
(
1999
).
20.
F. G.
Schmidt
,
B.
Hinner
, and
E.
Sackmann
,
Phys. Rev. E
61
,
5646
(
2000
);
F. G.
Schmidt
,
B.
Hinner
,
E.
Sackmann
, and
J. X.
Tang
,
Phys. Rev. E
62
,
5509
(
2000
).
21.
F.
Amblard
,
A. C.
Maggs
,
B.
Yurke
,
A. N.
Pargellis
, and
S.
Leibler
,
Phys. Rev. Lett.
77
,
4470
(
1996
).
22.
P.
Tapadia
and
S. Q.
Wang
,
Phys. Rev. Lett.
96
,
016001
(
2006
).
23.
B.
Crosignani
,
P.
DiPorto
, and
M.
Bertoleotti
,
Statistical Properties of Scattered Light
(
Academic Press
,
New York, NY
,
1975
).
24.
G. D. J.
Phillies
,
J. Chem. Phys.
60
,
976
(
1974
).
25.
G. D. J.
Phillies
,
J. Chem. Phys.
60
,
983
(
1974
).
26.
G. D. J.
Phillies
,
J. Chem. Phys.
122
,
224905
(
2005
).
27.
G. D. J.
Phillies
,
J. Chem. Phys.
137
,
124901
(
2012
).
28.
H. Z.
Cummins
,
N.
Knable
, and
Y.
Yeh
,
Phys. Rev. Lett.
12
,
150
(
1964
).
29.
B. J.
Berne
and
R.
Pecora
,
Dynamic Light Scattering: With Applications in Chemistry, Biology and Physics
(
Wiley
,
New York
,
1976
).
30.
J. L.
Doob
,
Ann. Math.
43
,
351
(
1942
).
31.
B. E.
Dahneke
,
Measurement of Suspended Particles by Quasi-Elastic Light Scattering
(
Wiley
,
New York
,
1983
).
32.
J.
Apgar
,
Y.
Tseng
,
E.
Federov
,
M. B.
Herwig
,
S. C.
Almo
, and
D.
Wirtz
,
Biophys. J.
79
,
1095
(
2000
).
33.
Y.
Tseng
and
D.
Wirtz
,
Biophys. J.
81
,
1643
(
2001
).
34.
J.
Xu
,
Y.
Tseng
,
C. J.
Carriere
, and
D.
Wirtz
,
Biomacromolecules
3
,
92
(
2002
).
35.
G. D. J.
Phillies
and
M.
Lacroix
,
J. Phys. Chem. B
101
,
39
(
1997
).
36.
G. D. J.
Phillies
,
R.
O'Connell
,
P.
Whitford
, and
K. A.
Streletzky
,
J. Chem. Phys.
119
,
9903
(
2003
).
37.
C.
Tanford
,
Physical Chemistry of Macromolecules
(
Wiley
,
New York
,
1961
), Eq. (17.32) and first unnumbered equation following Eq. (18.19).
38.
D. E.
Koppel
,
J. Chem. Phys.
57
,
4814
(
1972
).
39.
K. A.
Streletzky
and
G. D. J.
Phillies
,
J. Polym. Sci., Part B: Polym. Phys.
36
,
3087
(
1998
).
40.
L.-S.
Luo
,
G. D. J.
Phillies
,
L.
Colonna-Romano
, and
H.
Gould
,
Phys. Rev. E
51
,
43
(
1995
).
41.
L.-S.
Luo
and
G. D. J.
Phillies
,
J. Chem. Phys.
105
,
598
(
1996
).
42.
S.
Glotzer
,
V. N.
Novikoff
, and
T. B.
Schroder
,
J. Chem. Phys.
112
,
509
(
2000
).
43.
J. P.
Kratohvil
,
J. Colloid Interface Sci.
75
,
271
(
1980
).
44.
K.
Streletzky
and
G. D. J.
Phillies
,
Langmuir
11
,
42
(
1995
);
G. D. J.
Phillies
,
R. H.
Smith
,
K.
Strang
, and
N. V.
Sushkin
,
Langmuir
11
,
3408
(
1995
);
G. D. J.
Phillies
and
J.
Yambert
,
Langmuir
12
,
3431
3436
(
1996
);
N. V.
Sushkin
,
D.
Clomenil
,
J.
Ren
, and
G. D. J.
Phillies
,
Langmuir
15
,
3492
(
1999
).
45.
G. S.
Ullmann
and
G. D. J.
Phillies
,
Macromolecules
16
,
1947
(
1983
).
46.
K. A.
Streletzky
and
G. D. J.
Phillies
,
J. Chem. Phys.
108
,
2975
(
1998
).
47.
G. D. J.
Phillies
,
Rev. Sci. Instrum.
67
,
3423
(
1996
).
48.
D. B.
Cotts
,
J. Polym. Sci., Polym. Phys. Ed.
21
,
1381
(
1983
).
49.
T. P.
Lodge
,
Macromolecules
16
,
1393
(
1983
).
50.
T. P.
Lodge
,
P.
Markland
, and
L. M.
Wheeler
,
Macromolecules
22
,
3409
(
1989
).
You do not currently have access to this content.