We propose a new direct method for calculating simultaneously two recoilless f-factors of any iron-bearing compound relative to that of a reference material by collecting only a single-temperature Mössbauer spectrum. This methodology is comparatively much simpler than the usual one which requires taking Mössbauer spectra of the compound at several temperatures and subsequently fitting the temperature dependence of the subspectral area or the isomer shift data with a lattice vibrational model. We demonstrate the applicability of this new methodology in the case of three common iron-bearing compounds: magnetite, akaganeite and goethite, but of course this type of study can be extended to other materials. The two f-factors for each compound were related to iron ions located in sites of different origin: for magnetite, these were related to irons with two different oxidation states; for akaganeite to irons in two different crystallographic sites; and for goethite to irons in similar crystal sites but located in grains of different sizes. In the case of magnetite, we found that the f-factors for the Fe3+ and Fe2.5+ sites relative to that of metallic iron powder were of fFe3+/fFe = 0.97 ± 0.05 and fFe2.5+/fFe = 0.92 ± 0.05, respectively. Interestingly, the quotient of these two f-factors, i.e., fFe2.5+/fFe3+, is equal to 0.95 ± 0.05, which compares fairly well with a value reported in literature obtained using the complex methodology based on the temperature dependence of the absolute subspectral area and the Debye approximation. For akaganeite, the f-factors of the doublet 1, D1, and doublet 2, D2, sites relative to that of metallic iron powder were of fD1/fFe = 0.95 ± 0.08 and fD2/fFe = 0.98 ± 0.15, respectively. And for goethite we found that the f-factors of the sextet 1, G1, and sextet 2, G2, sites relative to that of metallic iron powder were of fG1/fFe = 0.80 ± 0.02 and fG2/fFe = 0.80 ± 0.02, respectively. The similarity of these last two factors is perhaps due to a sharp distribution of large grains.

1.
E.
Murad
and
J.
Cashion
,
Mössbauer Spectroscopy of Environmental Materials and their Industrial Utilization
(
Kluwer Academic Publishers
,
Boston
,
2004
), p.
122
.
2.
H.
Guérault
,
Y.
Labaye
, and
J. M.
Grenèche
,
Hyperfine Interact.
136
,
57
(
2001
).
3.
E.
De Grave
,
C. A.
Barrero
,
G. M.
da Costa
,
R. E.
Vandenberghe
, and
E.
Van San
,
Clay Miner.
37
,
591
(
2002
).
4.
E. E.
Sileo
,
D. P.
Daroca
,
C. A.
Barrero
,
A. L.
Larralde
,
M. S.
Giberti
, and
C.
Saragovi
,
Chem. Geol.
238
,
84
(
2007
).
5.
C. A.
Barrero
,
K. E.
García
,
A. L.
Morales
, and
J. M.
Greneche
,
Corros. Sci.
53
,
769
(
2011
).
6.
A.
Vértes
and
I.
Czakó-Nagy
,
Electrochim. Acta
34
,
721
(
1989
).
7.
S.
Hazra
,
S.
Sasmal
,
M.
Fleck
,
F.
Grandjean
,
M. T.
Sougrati
,
M.
Ghosh
,
T. D.
Harris
,
P.
Bonville
,
G. J.
Long
, and
S.
Mohanta
,
J. Chem. Phys.
134
,
174507
(
2011
).
8.
C.
Van Cromphaut
,
V. G.
de Resende
,
E.
De Grave
,
A.
Van Alboom
,
R. E.
Vandenberghe
, and
G.
Klingelhöfer
,
Geochim. Cosmochim. Acta
71
,
4814
(
2007
).
9.
E.
De Grave
and
A.
Van Alboom
,
Phys. Chem. Miner.
18
,
337
(
1991
).
10.
S. J.
Oh
and
D. E.
Cook
,
J. Appl. Phys.
85
,
329
(
1999
).
11.
S. J.
Oh
,
S. J.
Kwon
, and
J. Y.
Lee
,
J. Korean Phys. Soc.
40
,
866
(
2002
).
13.
M.
Sorescu
,
J. Nanopart. Res.
4
,
221
(
2002
).
14.
G. A.
Sawatzky
,
F.
van der Woude
, and
H.
Morrish
,
Phys. Rev.
183
,
383
(
1969
).
15.
S.
Margulies
and
J. R.
Ehrman
,
Nucl. Instrum. Methods Phys. Res.
12
,
131
(
1961
).
16.
D. G.
Rancourt
,
Nucl. Instrum. Methods Phys. Res.
B44
,
199
(
1989
).
17.
D. G.
Rancourt
,
A. M.
Mc Donald
,
A. E.
Lalonde
, and
J. Y.
Ping
,
Am. Mineral.
78
,
1
(
1993
).
18.
R. E.
Vandenberghe
,
C. A.
Barrero
,
G. M.
da Costa
,
E.
Van San
, and
E.
De Grave
,
Hyperfine Interact.
126
,
247
(
2000
).
19.
C. A.
Barrero
,
A. L.
Morales
,
J.
Mazo Zuluaga
,
F.
Jaramillo
,
G.
Pérez
,
D. M.
Escobar
,
C. E.
Arroyave
,
J.
Tobón
,
P. M.
Montoya
,
L. F.
Osorio
,
R. E.
Vandenberghe
, and
J. M.
Greneche
,
Rev. Metal. (Madrid)
39
(Extra),
62
(
2003
).
20.
C. A.
Barrero
,
K. E.
García
, and
J. C.
Coa
,
J. Phys. Chem. Solids
74
,
1012
(
2013
).
21.
C. A.
Barrero
,
R. E.
Vandenberghe
, and
E.
De Grave
,
Hyperfine Interact.
122
,
39
(
1999
).
22.
C. A.
Barrero
,
J. D.
Betancur
,
J. M.
Greneche
,
G. F.
Goya
, and
T.
De Souza
,
Geophys. J. Int.
164
,
331
(
2006
).
23.
U.
Schwertmann
and
R. M.
Cornell
,
Iron Oxides in the Laboratory: Preparation and Characterization
(
Wiley-VCH
,
Weinheim
,
2000
).
24.
J. M. D.
Coey
,
A.
Barry
,
J. M.
Brotto
,
H.
Rakoto
,
S.
Brennan
,
W. N.
Mussel
,
A.
Collomb
, and
D.
Fruchart
,
J. Phys.: Condens. Matter
7
,
759
(
1995
).
25.
C. A.
Barrero
,
K. E.
García
,
A. L.
Morales
,
S.
Kodjikian
, and
J. M.
Greneche
,
J. Phys.: Condens. Matter
18
,
6827
(
2006
).
26.
K.
Lagarec
and
D. G.
Rancourt
, Recoil: Mössbauer Spectral Analysis Software for Windows, version 1.0 (Department of Physics, University of Ottawa, Canada,
1998
).
27.
G. J.
Long
,
T. E.
Cranshaw
, and
G.
Longworth
,
Mössbauer Effect Ref. Data J.
6
,
42
(
1983
).
29.
J. E.
Post
and
V. F.
Buchwald
,
Am. Mineral.
76
,
272
(
1991
).
30.
J. E.
Post
,
P. J.
Heaney
,
R. B.
Von Dreele
, and
J. C.
Hanson
,
Am. Mineral.
88
,
782
(
2003
).
You do not currently have access to this content.