According to the classical Gibbs' approach to the description of thermodynamically heterogeneous systems, the temperature of the critical clusters in nucleation is the same as the temperature of the ambient phase, i.e., with respect to temperature the conventional macroscopic equilibrium conditions are assumed to be fulfilled. In contrast, the generalized Gibbs' approach [J. W. P. Schmelzer, G. Sh. Boltachev, and V. G. Baidakov, J. Chem. Phys.119, 6166 (2003) https://doi.org/10.1063/1.1602066; J. W. P. Schmelzer, G. Sh. Boltachev, and V. G. Baidakov, J. Chem. Phys.124, 194503 (2006)] https://doi.org/10.1063/1.2196412 predicts that critical clusters (having commonly spatial dimensions in the nanometer range) have, as a rule, a different temperature as compared with the ambient phase. The existence of a curved interface may lead, consequently, to an equilibrium coexistence of different phases with different temperatures similar to differences in pressure as expressed by the well-known Laplace equation. Employing the generalized Gibbs' approach, it is demonstrated that, for the case of formation of droplets in a one-component vapor, the temperature of the critical droplets can be shown to be higher as compared to the vapor. In this way, temperature differences between critically sized droplets and ambient vapor phase, observed in recent molecular dynamics simulations of argon condensation by Wedekind et al. [J. Chem. Phys.127, 064501 (2007)] https://doi.org/10.1063/1.2752154, can be given a straightforward theoretical interpretation. It is shown as well that – employing the same model assumptions concerning bulk and interfacial properties of the system under consideration – the temperature of critical bubbles in boiling is lower as compared to the bulk liquid.

1.
J.
Feder
,
K. C.
Russell
,
J.
Lothe
, and
G. M.
Pound
,
Adv. Phys.
15
,
111
(
1966
).
2.
I. J.
Ford
and
C. F.
Clement
,
J. Phys. A
22
,
4007
4018
(
1989
).
3.
B. E.
Wyslouzil
and
J. H.
Seinfeld
,
J. Chem. Phys.
97
,
2661
(
1992
).
4.
J. C.
Barrett
,
C. F.
Clement
, and
I. J.
Ford
,
J. Phys. A
26
,
529
(
1993
).
5.
F. M.
Kuni
,
A. P.
Grinin
, and
A. K.
Shchekin
,
Physica A
252
,
67
(
1998
).
6.
J. H.
ter Horst
,
D.
Bedeaux
, and
S.
Kjelstrup
,
J. Chem. Phys.
134
,
054703
(
2011
).
7.
J. C.
Barrett
,
J. Chem. Phys.
135
,
096101
(
2011
).
8.
G. Sh.
Boltachev
and
J. W. P.
Schmelzer
,
J. Chem. Phys.
133
,
134509
(
2010
).
9.
J. W. P.
Schmelzer
and
A. S.
Abyzov
,
J. Chem. Phys.
134
,
054511
(
2011
).
10.
M.
Falcioni
,
D.
Villamaina
,
A.
Vulpiani
,
A.
Puglisi
, and
A.
Sarracino
,
Am. J. Phys.
79
,
777
(
2011
).
11.
J.
Wedekind
,
D.
Reguera
, and
R.
Strey
, “
The temperature of nucleating droplets
,” in
Nucleation and Atmospheric Aerosols
, edited by
C. D.
O'Dowd
and
P. E.
Wagner
(
Springer
,
2007
), pp.
102
106
.
12.
J.
Wedekind
,
D.
Reguera
, and
R.
Strey
,
J. Chem. Phys.
127
,
064501
(
2007
).
13.
J. W.
Gibbs
, “
On the equilibrium of heterogeneous substances
,”
Trans. Conn. Acad. Arts Sci.
3
,
108
, 343 (
1875
);
Thermodynamics
,
The Collected Works
Vol.
1
(
Longmans
,
New York
,
1928
).
14.
J. W. P.
Schmelzer
and
A. S.
Abyzov
,
J. Eng. Thermophys.
16
,
119
(
2007
).
15.
J. W. P.
Schmelzer
,
V. M.
Fokin
,
A. S.
Abyzov
,
E. D.
Zanotto
, and
I.
Gutzow
,
Int. J. Appl. Glass Sci.
1
,
16
(
2010
).
16.
I. S.
Gutzow
and
J. W. P.
Schmelzer
,
The Vitreous State: Thermodynamics, Structure, Rheology, and Crystallization
, 1st ed. (
Springer
,
Berlin
,
1995
); 2nd ed. (Springer, Heidelberg, 2013).
17.
J. W. P.
Schmelzer
,
V. G.
Baidakov
, and
G. Sh.
Boltachev
,
J. Chem. Phys.
119
,
6166
(
2003
).
18.
J. W. P.
Schmelzer
,
G. Sh.
Boltachev
, and
V. G.
Baidakov
, “
Is Gibbs' thermodynamic theory of heterogeneous systems really perfect
?” in
Nucleation Theory and Applications
, edited by
J. W. P.
Schmelzer
(
Wiley-VCH
,
Berlin
,
2005
), Chap. 11.
19.
J. W. P.
Schmelzer
,
G. Sh.
Boltachev
, and
V. G.
Baidakov
,
J. Chem. Phys.
124
,
194503
(
2006
).
20.
V. P.
Skripov
and
M. Z.
Faizullin
,
Crystal-Liquid-Gas Phase Transitions and Thermodynamic Similarity
(
Wiley-VCH
,
Berlin
,
2006
).
21.
J. W. P.
Schmelzer
, “
Generalized Gibbs thermodynamics and nucleation-growth phenomena
,” in
Proceedings of the NATO Advanced Research Workshop on Metastable Systems under Pressure, Odessa, Ukraine, 4–8 October 2008
, edited by
S.
Rzoska
,
A.
Drozd-Rzoska
, and
V.
Mazur
(
Springer
,
2009
), pp.
389
402
.
22.
J. W. P.
Schmelzer
and
V. G.
Baidakov
,
J. Phys. Chem.
105
,
11595
(
2001
).
23.
A. S.
Abyzov
and
J. W. P.
Schmelzer
,
J. Chem. Phys.
138
,
164504
(
2013
).
24.
L. D.
Landau
and
E. M.
Lifshitz
,
Statistical Physics
,
Course of Theoretical Physics
Vol.
5
(
Pergamon Press
,
Oxford
,
1982
).
25.
E. A.
Korochkova
,
G. Sh.
Boltachev
, and
V. G.
Baidakov
,
Zh. Fiz. Khim.
80
,
528
(
2006
);
E. A.
Korochkova
,
G. Sh.
Boltachev
, and
V. G.
Baidakov
,
Russ. J. Phys. Chem.
80
,
445
(
2006
) (English translation).
26.
V. G.
Baidakov
,
G. G.
Cherhykh
, and
S. P.
Protsenko
,
Zh. Fiz. Khim.
74
,
1382
(
2006
);
V. G.
Baidakov
,
G. G.
Cherhykh
, and
S. P.
Protsenko
,
Russ. J. Phys. Chem.
74
,
1241
(
2000
) (English translation).
27.
A. S.
Abyzov
,
J. W. P.
Schmelzer
,
L. N.
Davydov
, and
V. V.
Slezov
,
Prob. At. Sci. Technol.
57
,
283
(
2012
).
28.
S.
Carnot
,
Betrachtungen über die bewegende Kraft des Feuers und die zur Entwickelung dieser Kraft geeigneten Maschinen
(
Wilhelm Engelmann-Verlag
,
Leipzig
,
1892
) (German translation by W. Ostwald) (Original French version 1824).
29.
E.
Bormashenko
,
A.
Shkorbatov
, and
O.
Gendelman
,
Am. J. Phys.
75
,
911
(
2007
).
30.
J. W. P.
Schmelzer
,
J.
Schmelzer
 Jr.
, and
I.
Gutzow
,
J. Chem. Phys.
112
,
3820
(
2000
).
31.
J. W.
Gibbs
,
Elementare Grundlagen der Statistischen Mechanik
(
Johann Ambrosius Barth
,
Leipzig
,
1905
).
32.
A. S.
Abyzov
,
J. W. P.
Schmelzer
,
A. A.
Kovalchuk
, and
V. V.
Slezov
,
J. Non-Cryst. Solids
356
,
2915
(
2010
).
33.
A. S.
Abyzov
and
J. W. P.
Schmelzer
, “
Kinetics of segregation processes in solutions: Saddle point versus ridge crossing of the thermodynamic potential barrier
,”
J. Non-Cryst. Solids
(in press).
You do not currently have access to this content.