We present an EOMCCSD (equation of motion coupled cluster with singles and doubles) study of excited states of the small [UO2]2+ and [UO2]+ model systems as well as the larger UVIO2(saldien) complex. In addition, the triples contribution within the EOMCCSDT and CR-EOMCCSD(T) (completely renormalized EOMCCSD with non-iterative triples) approaches for the [UO2]2+ and [UO2]+ systems as well as the active-space variant of the CR-EOMCCSD(T) method—CR-EOMCCSd(t)—for the UVIO2(saldien) molecule are investigated. The coupled cluster data were employed as benchmark to choose the “best” appropriate exchange–correlation functional for subsequent time-dependent density functional (TD-DFT) studies on the transition energies for closed-shell species. Furthermore, the influence of the saldien ligands on the electronic structure and excitation energies of the [UO2]+ molecule is discussed. The electronic excitations as well as their oscillator dipole strengths modeled with TD-DFT approach using the CAM-B3LYP exchange–correlation functional for the [UVO2(saldien)] with explicit inclusion of two dimethyl sulfoxide molecules are in good agreement with the experimental data of Takao et al [Inorg. Chem.49, 2349 (2010)

].

1.
M.
Pepper
and
B. E.
Bursten
, “
The electronic structure of actinide-containing molecules: a challenge to applied quantum chemistry
,”
Chem. Rev.
91
,
719
(
1991
).
2.
R. G.
Denning
, “
Electronic structure and bonding in actinyl ions and their analogs
,”
J. Phys. Chem. A
111
,
4125
(
2007
).
3.
S.
Fortier
and
T. W.
Hayton
, “
Oxo ligand functionalization in the uranyl ion (
${\rm UO}_2^{2+}$
UO 22+
)
,”
Coord. Chem. Rev.
254
,
197
(
2010
).
4.
M.
Dolg
and
X.
Cao
, “
Relativistic pseudopotentials: Their development and scope of applications
,”
Chem. Rev.
112
,
403
(
2012
).
5.
A.
Kovacs
and
R. J. M.
Konings
, “
Computed vibrational frequencies of actinide oxides AnO0/+/2+ and
${\rm AnO}_2^{0/+/2+}$
AnO 20/+/2+
(An = Th, Pa, U, Np, Pu, Am, Cm)
,”
J. Phys. Chem. A
115
,
6646
(
2011
).
6.
D.
Wang
,
W. F.
van Gunsteren
, and
Z.
Chai
, “
Recent advances in computational actinoid chemistry
,”
Chem. Soc. Rev.
41
,
5836
(
2012
).
7.
G. J.
Hutchings
,
C. S.
Heneghan
,
I. D.
Hudson
, and
S. H.
Taylor
, “
Uranium-oxide-based catalysts for the destruction of volatile chloro-organic compounds
,”
Nature
384
,
341
(
1996
).
8.
Z. T.
Zhang
,
M.
Konduru
,
S.
Dai
, and
S. H.
Overbury
, “
Uniform formation of uranium oxide nanocrystals inside ordered mesoporous hosts and their potential applications as oxidative catalysts
,”
Chem. Commun.
20
,
2406
(
2002
).
9.
G. R.
Choppin
, “
Actinide speciation in the environment
,”
J. Radioanal. Nucl. Chem.
273
,
695
(
2007
).
10.
K.
Nash
, “
A review of the basic chemistry and recent developments in trivalent f-elements separations
,”
Solvent Extr. Ion Exch.
11
,
729
(
1993
).
11.
K. L.
Nash
,
R. E.
Barrans
,
R.
Chiarizia
,
M. L.
Dietz
,
M.
Jensen
,
P.
Rickert
,
B. A.
Moyer
,
P. V.
Bonnesen
,
J. C.
Bryan
, and
R. A.
Sachleben
, “
Fundamental investigations of separations science for radioactive materials
,”
Solvent Extr. Ion Exch.
18
,
605
(
2000
).
12.
H.
Steele
and
R. J.
Taylor
, “
A theoretical studies of the inner-sphere disproportionation reaction mechanism of the pentavalent actinyl ions
,”
Inorg. Chem.
46
,
6311
(
2007
).
13.
S.
Cotton
,
Lanthanide and Actinide Chemistry
(
Wiley
,
2005
).
14.
M.
Zhou
,
N.
Ismail
,
C.
Marsden
, and
L.
Andrews
, “
Infrared spectra of UO2,
${\rm UO}_2^+$
UO 2+
, and
${\rm UO}_2^-$
UO 2
in solid neon
,”
J. Phys. Chem. A
104
,
5495
(
2000
).
15.
C.
Clavaguéra-Sarrio
,
N.
Ismail
,
C. J.
Marsden
,
D.
Bégue
, and
C.
Pouchan
, “
Calculation of harmonic and anharmonic vibrational wavenumbers for triatomic uranium compounds XUY
,”
Chem. Phys.
302
,
1
(
2004
).
16.
G. S.
Groenewold
,
A. K.
Gianotto
,
M. E.
McIlwain
,
M. J.
van Stipdonk
,
M.
Kullman
,
D. T.
Moore
,
N.
Polfer
,
J.
Oomens
,
I.
Infante
,
L.
Visscher
,
B.
Siboulet
, and
W. A.
de Jong
, “
Infrared spectroscopy of discrete uranyl anion complexes
,”
J. Phys. Chem. A
112
,
508
(
2008
).
17.
N.
Iché-Tarrat
and
C. J.
Marsden
, “
Examining the performance of DFT methods in uranium chemistry: Does core size matter for a pseudopotential?
J. Phys. Chem. A
112
,
7632
(
2008
).
18.
G. S.
Groenewold
,
M. J.
Van Stipdonk
,
W. A.
de Jong
,
J.
Oomens
,
G. L.
Gresham
,
M. E.
McIlwain
,
D.
Gao
,
B.
Siboulet
,
L.
Visscher
,
M.
Kullman
, and
N.
Polfer
, “
Infrared spectroscopy of dioxouranium(V) complexes with solvent molecules: effect of reduction
ChemPhysChem
9
,
1278
(
2008
).
19.
V.
Vallet
,
U.
Wahlgren
, and
I.
Grenthe
, “
Probing the nature of chemical bonding in uranyl(VI) complexes with quantum chemical methods
J. Phys. Chem. A
116
,
12373
(
2012
).
20.
G.
Nocton
,
P.
Horeglad
,
V.
Vetere
,
J.
Pécaut
,
L.
Dubois
,
P.
Maldivi
,
N. M.
Edelstein
, and
M.
Mazzanti
, “
Synthesis, structure, and bonding of stable complexes of pentavalent uranyl
,”
J. Am. Chem. Soc.
132
,
495
(
2010
).
21.
I.
Infante
,
L.
Andrews
,
X.
Wang
, and
L.
Gagliardi
, “
Noble gas matrices may change the electronic structure of trapped molecules: The UO(2)(Ng)(4) [Ng = Ne, Ar] case
,”
Chem.-Eur. J.
16
,
12804
(
2010
).
22.
D. R.
Brown
and
R. G.
Denning
, “
Stable analogs of the uranyl ion containing the –NUN– group
,”
Inorg. Chem.
35
,
6158
(
1996
).
23.
T. J.
Barker
,
R. G.
Denning
, and
J. R. G.
Thorne
, “
Applications of two-photon spectroscopy to inorganic compounds. 1. Spectrum and electronic structure of dicesium tetrachlorodioxouranate
,”
Inorg. Chem.
26
,
1721
(
1987
).
24.
K.
Mizuoka
,
S.
Tsushima
,
M.
Hasegawa
,
T.
Hoshi
, and
Y.
Ikeda
, “
Electronic spectra of pure uranyl(V) complexes: characteristic absorption bands duo to a UVO2 core in visible and near-infrared regions
,”
Inorg. Chem.
44
,
6211
(
2005
).
25.
L. R.
Morss
,
N. M.
Edelstein
, and
J.
Fuger
,
The Chemistry of the Actinide and Transactinide Elements
(
Springer
,
2010
).
26.
R. G.
Denning
, “
Electronic structure and bonding in actinyl ions
,”
Struct. Bonding
79
,
215
(
1992
).
27.
P. C.
Burns
,
Y.
Ikeda
, and
K.
Czerwinski
, “
Advances in actinide solid-state and coordination chemistry
,”
MRS Bull.
35
,
868
(
2010
).
28.
S.
Fortier
,
G.
Wu
, and
T. W.
Hayton
, “
Synthesis of a nitrido-substituted analogue of the uranyl ion, [N=U=O]+
,”
J. Am. Chem. Soc.
132
,
6888
(
2010
).
29.
S. G.
Minasian
,
J. M.
Keith
,
E. R.
Batista
,
K. S.
Boland
,
D. L.
Clark
,
S. D.
Conradson
,
S.
Kozimor
,
R. L.
Martin
,
D. E.
Schwarz
,
D. K.
Shuh
,
G. L.
Wagner
,
M. P.
Wilkerson
,
L. E.
Wolfsberg
, and
P.
Yang
, “
Determining relative f and d orbital contributions to M-Cl covalency in MCl(6)(2-) (M = Ti, Zr, Hf, U) and UOCl(5)(-) using Cl K-Edge X-ray absorption spectroscopy and time-dependent density functional theory
J. Am. Chem. Soc.
134
,
5586
(
2012
).
30.
P. L.
Arnold
,
J. B.
Love
, and
D.
Patel
, “
Pentavalent uranyl complexes
Coord. Chem. Rev.
253
,
1973
(
2009
).
31.
R.
Spezia
,
B.
Siboulet
,
S.
Abadie
,
R.
Vuilleumier
, and
P.
Vitorge
, “
Stability and instability of the isoelectronic
${\rm UO}_2^{2+}$
UO 22+
and
${\rm PaO}_2^+$
PaO 2+
actinyl oxo-cations in aqueous solution from density functional theory based molecular dynamics
,”
J. Phys. Chem. B
115
,
3560
(
2011
).
32.
A.
Ekstrom
, “
Kinetics and mechanism of the disproportionation of uranium(V)
,”
Inorg. Chem.
13
,
2237
(
1974
).
33.
C.
Madic
,
B.
Guillaume
,
J. C.
Morriseau
, and
J. P.
Moulin
, “
Cation-cation complexes of pentavalent actinides-I: Spectrophotometric study of complexes between neptunium (V) and
${\rm UO}_2^{2+}$
UO 22+
and
${\rm NpO}_2^{2+}$
NpO 22+
ions in aqueous perchloric and nitric solutions
,”
J. Inorg. Nucl. Chem.
41
,
1027
(
1979
).
34.
F.
Burdet
,
J.
Pecaut
, and
M.
Mazzanti
, “
Isolation of a tetrameric cation-cation complex of pentavalent uranyl
,”
J. Am. Chem. Soc.
128
,
16512
(
2006
).
35.
V.
Mougel
,
J.
Pécaut
, and
M.
Mazzanti
, “
New polynuclear U(IV)-U(V) complexes from U(IV) mediated uranyl(V) disproportionation
Chem. Commun.
48
,
868
(
2012
).
36.
D.
Cohen
, “
The preparation and spectrum of uranium(V) ions in aqueous solutions
,”
J. Inorg. Nucl. Chem.
32
,
3525
(
1970
).
37.
K.
Mizuoka
,
S.-Y.
Kim
,
M.
Hasegawa
,
T.
Hoshi
,
G.
Uchiyama
, and
Y.
Ikeda
, “
Electrochemical and spectroelectrochemical studies on UO2(saloph)L (saloph = N,N-disalicylidene-o-phenylenediaminate, L = dimethyl sulfoxide or N,N-dimethylformamide)
,”
Inorg. Chem.
42
,
1031
(
2003
).
38.
K.
Mizuoka
and
Y.
Ikeda
, “
Structural changes of uranyl moiety with reduction from U(VI) to U(V)
,”
Radiochim. Acta
92
,
631
(
2004
).
39.
K.
Takao
,
M.
Kato
,
S.
Takao
,
A.
Nagasawa
,
G.
Bernhard
,
C.
Hennig
, and
Y.
Ikeda
, “
Molecular structure and electrochemical behavior of uranyl(VI) complex with pentadentate Schiff base ligand: Prevention of uranyl(V) cation-cation interaction by fully chelating equatorial coordination sites
,”
Inorg. Chem.
49
,
2349
(
2010
).
40.
K.
Takao
,
S.
Tsushima
,
S.
Takao
,
A. C.
Scheinost
,
G.
Bernhard
,
Y.
Ikeda
, and
C.
Hennig
, “
X-ray absorption fine structures of uranyl(V) complexes in a nonaqueous solution
,”
Inorg. Chem.
48
,
9602
(
2009
).
41.
K.
Takao
,
M.
Kato
,
S.
Takao
,
A.
Nagasawa
,
A. C.
Scheinost
,
G.
Bernhard
,
C.
Hennig
, and
Y.
Ikeda
, “
Structural and electrochemical studies on uranyl(VI) complex with pentadentate Schiff base ligand: A guide to stable uranyl(V)
,”
IOP Conf. Ser.: Mater. Sci. Eng.
9
,
012030
(
2010
).
42.
P. L.
Arnold
,
A.-F.
Pecharman
,
E.
Hollis
,
A.
Yahia
,
L.
Maron
,
S.
Parsons
, and
J. B.
Love
, “
Uranyl oxo activation and functionalization by metal cation coordination
Nat. Chem.
2
,
1056
(
2010
).
43.
Q.-J.
Pan
,
G. A.
Shamov
, and
G.
Schreckenbach
, “
Binuclear uranium(VI) complexes with a “Pacman” expanded porphyrin: Computational evidence for highly unusual bis-actinyl structures
,”
Chem.-Eur. J.
16
,
2282
(
2010
).
44.
P. L.
Arnold
,
G. M.
Jones
,
S. O.
Odoh
,
G.
Schreckenbach
,
N.
Magnani
, and
J. B.
Love
, “
Strongly coupled binuclear uranium-oxo complexes from uranyl oxo rearrangement and reductive silylation
Nat. Chem.
4
,
221
(
2012
).
45.
G.
Gritzner
and
J.
Selbin
, “
Studies of dioxouranium(V) dimethylsulphoxide in dimethylsulphoxide
,”
J. Inorg. Nucl. Chem.
30
,
1799
(
1968
).
46.
K.
Binnemans
, “
Lanthanides and actinides in ionic liquids
,”
Chem. Rev.
107
,
2592
(
2007
).
47.
V.
Goncharov
,
L. A.
Kaledin
, and
M. C.
Heaven
, “
Probing the electronic structure of UO+ with high-resolution photoelectron spectroscopy
,”
J. Chem. Phys.
125
,
133202
(
2006
).
48.
I.
Infante
,
M.
Vilkas
,
I.
Ishikawa
,
U.
Kaldor
, and
L.
Visscher
, “
A Fock space coupled cluster study on the electronic structure of the UO2,
${\rm UO}_2^+$
UO 2+
, U4+, and U5+ species
,”
J. Chem. Phys.
127
,
124308
(
2007
).
49.
F.
Ruipérez
,
C.
Danilo
,
F.
Réal
,
J.-P.
Flament
,
V.
Vallet
, and
U.
Wahlgren
, “
An ab initio theoretical study of the electronic structure of
${\rm UO}_2^+$
UO 2+
and [UO2(CO3)3]5−
,”
J. Phys. Chem. A
113
,
1420
(
2009
).
50.
M. E.
Casida
,
Recent Advances in Density Functional Methods, Part I
(
World Scientific
,
1995
).
51.
E.
Runge
and
E. K. U.
Gross
, “
Density-functional theory for time-dependent systems
,”
Phys. Rev. Lett.
52
,
997
(
1984
).
52.
D. J.
Tozer
and
N. C.
Handy
, “
On the determination of excitation energies using density functional theory
,”
Phys. Chem. Chem. Phys.
2
,
2117
(
2000
).
53.
D. J.
Tozer
, “
Relationship between long-range charge-transfer excitation energy error and integer discontinuity in Kohn–Sham theory
,”
J. Chem. Phys.
119
,
12697
(
2003
).
54.
O.
Gritsenko
and
E. J.
Baerends
, “
Asymptotic correction of the exchange–correlation kernel of time-dependent density functional theory for long-range charge-transfer excitations
,”
J. Chem. Phys.
121
,
655
(
2004
).
55.
A.
Rosa
,
E. J.
Baerends
,
S. J. A.
van Gisbergen
,
E.
van Lenthe
,
J. A.
Groeneveld
, and
J. G. S.
Snijders
, “
Electronic spectra of M(CO)6 (M = Cr, Mo, W) revisited by a relativistic TDDFT approach
,”
J. Am. Chem. Soc.
121
,
10356
(
1999
).
56.
S. J. A.
van Gisbergen
,
J. A.
Groeneveld
,
A.
Rosa
,
J. G.
Snijders
, and
E. J.
Baerends
, “
Excitation energies for transition metal compounds from time-dependent density functional theory. Applications to
${\rm MnO}_4^-$
MnO 4
, Ni(CO)4, and Mn2(CO)10
,”
J. Phys. Chem. A
103
,
6835
(
1999
).
57.
S. J. A.
van Gisbergen
,
A.
Rosa
,
G.
Ricciardi
, and
E. J.
Baerends
, “
Time-dependent density functional calculations on the electronic absorption spectrum of free base porphin
,”
J. Chem. Phys.
111
,
2499
(
1999
).
58.
F.
Réal
,
V.
Vallet
,
C.
Marian
, and
U.
Wahlgren
, “
Theoretical investigation of the energies and geometries of photoexcited uranyl(VI) ion: A comparison between wave-function theory and density functional theory
,”
J. Chem. Phys.
127
,
214302
(
2007
).
59.
M. J. G.
Peach
,
P.
Benfield
,
T.
Helgaker
, and
D. J.
Tozer
, “
Excitation energies in density functional theory: An evaluation and a diagnostic test
,”
J. Chem. Phys.
128
,
044118
(
2008
).
60.
M. J. G.
Peach
and
D. J.
Tozer
, “
Illustration of a TDDFT spatial overlap diagnostic by basis function exponent scaling
,”
J. Mol. Struct.: THEOCHEM
914
,
110
(
2009
).
61.
M. J. G.
Peach
,
C. R.
Le Sueur
,
K.
Ruud
,
M.
Guillaume
, and
D. J.
Tozer
, “
TDDFT diagnostic testing and functional assessment for triazene chromophores
,”
Phys. Chem. Chem. Phys.
11
,
4465
(
2009
).
62.
M. A.
Rohrdanz
,
K. M.
Martins
, and
J. M.
Herbert
, “
A long-range-corrected density functional that performs well for both ground-state properties and time-dependent density functional theory excitation energies, including charge-transfer excited states
,”
J. Chem. Phys.
130
,
054112
(
2009
).
63.
D.
Jacquemin
,
E. A.
Perpéte
,
I.
Ciofini
, and
C.
Adamo
, “
On the performances of the M06 family of density functionals for electronic excitation energies
,”
J. Chem. Theory Comput.
6
,
1532
(
2010
).
64.
D.
Jacquemin
,
E. A.
Perpéte
,
I.
Ciofini
,
C.
Adamo
,
R.
Valero
,
Y.
Zhao
, and
D. G.
Truhlar
, “
On the performances of the M06 family of density functionals for electronic excitation energies
,”
J. Chem. Theory Comput.
6
,
2071
(
2010
).
65.
P.
Tecmer
,
A. S. P.
Gomes
,
U.
Ekström
, and
L.
Visscher
, “
Electronic spectroscopy of
${\rm UO}_2^{2+}$
UO 22+
, NUO+ and NUN: an evaluation of time-dependent density functional theory for actinides
,”
Phys. Chem. Chem. Phys.
13
,
6249
(
2011
).
66.
P.
Tecmer
,
R.
Bast
,
K.
Ruud
, and
L.
Visscher
, “
Charge-transfer excitations in uranyl tetrachloride ([UO2Cl4]2): How reliable are electronic spectra from relativistic time-dependent density functional theory?
,”
J. Phys. Chem. A
116
,
7397
(
2012
).
67.
M.
Dreuw
and
M.
Head-Gordon
, “
Failure of time-dependent density functional theory for long-range charge-transfer excited states: The zincbacteriochlorin-bacterlochlorin and bacteriochlorophyll-spheroidene complexes
,”
J. Am. Chem. Soc.
126
,
4007
(
2004
).
68.
S.
Tokura
,
T.
Tsuneda
, and
K.
Hirao
, “
Long-range-corrected time-dependent density functional study on electronic spectra of five-membered ring compounds and free-base porphyrin
,”
J. Theor. Comput. Chem.
5
,
925
(
2006
).
69.
I.
Ciofini
and
C.
Adamo
, “
Accurate evaluation of valence and low-lying Rydberg states with standard time-dependent density functional theory
,”
J. Phys. Chem. A
111
,
5549
(
2007
).
70.
N.
Govind
,
M.
Valiev
,
L.
Jensen
, and
K.
Kowalski
, “
Excitation energies of zinc porphyrin in aqueous solution using long-range corrected time-dependent density functional theory
,”
J. Phys. Chem. A
113
,
6041
(
2009
).
71.
L.
Jensen
and
N.
Govind
, “
Excited states of DNA base pairs using long-range corrected time-dependent density functional theory
,”
J. Phys. Chem. A
113
,
9761
(
2009
).
72.
J.
Plötner
,
D. J.
Tozer
, and
A.
Dreuw
, “
Dependence of excited state potential energy surfaces on the spatial overlap of the Kohn–Sham orbitals and the amount of nonlocal Hartree–Fock exchange in time-dependent density functional theory
,”
J. Chem. Theory Comput.
6
,
2315
(
2010
).
73.
K. R.
Glaesemann
,
N.
Govind
,
S.
Krishnamoorthy
, and
K.
Kowalski
, “
EOMCC, MRPT, and TDDFT studies of charge-transfer processes in mixed-valence compounds: Application to the spiro molecule
,”
J. Phys. Chem. A
114
,
8764
(
2010
).
74.
K.
Kowalski
,
S.
Krishnamoorthy
,
O.
Villa
,
J. R.
Hammond
, and
N.
Govind
, “
Active-space completely-renormalized equation-of-motion coupled-cluster formalism: Excited-state studies of green fluorescent protein, free-base porphyrin, and oligoporphyrin dimer
,”
J. Chem. Phys.
132
,
154103
(
2010
).
75.
J.
Andzelm
,
C.
Rinderspacher
,
A. M.
Rawlett
,
J.
Dougherty
,
R.
Baer
, and
N.
Govind
, “
Performance of DFT methods in the calculation of optical spectra of TCF-chromophores
,”
J. Chem. Theory Comput.
5
,
2835
(
2009
).
76.
K.
Lopata
,
R.
Reslan
,
M.
Kowaska
,
D.
Neuhauser
,
N.
Govind
, and
K.
Kowalski
, “
Excited-state studies of polyacenes: A comparative picture using EOMCCSD, CR-EOMCCSD(T), range-separated (LR/RT)-TDDFT, TD-PM3, and TD-ZINDO
,”
J. Chem. Theory Comput.
7
,
3686
(
2011
).
77.
O.
Gunnarsson
and
B. I.
Lundqvist
, “
Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism
,”
Phys. Rev. B
13
,
4274
(
1976
).
78.
A.
Ipatov
,
F.
Cordova
,
L. J.
Doriol
, and
M. E.
Casida
, “
Excited-state spin-contamination in time-dependent density-functional theory for molecules with open-shell ground states
,”
J. Mol. Struct.: THEOCHEM
914
,
60
(
2009
).
79.
K.
Andersson
,
P.-A.
Malmqvist
,
B. O.
Roos
,
A. J.
Sadlej
, and
K.
Woliński
, “
Second-order perturbation theory with a CASSCF reference function
,”
J. Phys. Chem.
94
,
5483
(
1990
).
80.
K.
Andersson
,
P.-A.
Malmqvist
, and
B. O.
Roos
, “
Second-order perturbation theory with a complete active space self-consistent field reference function
,”
J. Chem. Phys.
96
,
1218
(
1992
).
81.
A.
Landau
,
E.
Eliav
,
Y.
Ishikawa
, and
U.
Kaldor
, “
Intermediate Hamiltonian Fock-space coupled-cluster method: Excitation energies of barium and radium
,”
J. Chem. Phys.
113
,
9905
(
2000
).
82.
A.
Landau
,
E.
Eliav
,
Y.
Ishikawa
, and
U.
Kaldor
, “
Intermediate Hamiltonian Fock-space coupled cluster method in the one-hole one-particle sector: Excitation energies of xenon and radon
,”
J. Chem. Phys.
115
,
6862
(
2001
).
83.
L.
Visscher
,
E.
Eliav
, and
U.
Kaldor
, “
Formulation and implementation of the relativistic Fock-space coupled cluster method for molecules
,”
J. Chem. Phys.
115
,
9720
(
2001
).
84.
T.
Yanai
,
D. P.
Tew
, and
N. C.
Handy
, “
A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP)
,”
Chem. Phys. Lett.
393
,
51
(
2004
).
85.
K.
Pierloot
,
E.
van Besien
,
E.
van Lenthe
, and
E. J.
Baerends
, “
Electronic spectrum of
${\rm UO}_2^{2+}$
UO 22+
and [UO2Cl4]2− calculated with time-dependent density functional theory
,”
J. Chem. Phys.
126
,
194311
(
2007
).
86.
R. J.
Bartlett
and
M.
Musiał
, “
Coupled-cluster theory in quantum chemistry
,”
Rev. Mod. Phys.
79
,
291
(
2007
).
87.
V. V.
Ivanov
,
D. I.
Lyakh
, and
L.
Adamowicz
, “
Multireference state-specific coupled-cluster methods. State-of-the-art and perspectives
,”
Phys. Chem. Chem. Phys.
11
,
2355
(
2009
).
88.
B.
Jeziorski
, “
Multireference coupled-cluster Ansatz
,”
Mol. Phys.
108
,
3043
(
2010
).
89.
D. I.
Lyakh
,
M.
Musiał
,
V. F.
Lotrich
, and
J.
Bartlett
, “
Multireference nature of chemistry: The coupled-cluster view
,”
Chem. Rev.
112
,
182
(
2012
).
90.
K.
Kowalski
and
P.
Piecuch
, “
New coupled-cluster methods with singles, doubles, and noniterative triples for high accuracy calculations of excited electronic states
,”
J. Chem. Phys.
120
,
1715
(
2004
).
91.
M.
Wloch
,
J. R.
Gour
,
K.
Kowalski
, and
P.
Piecuch
, “
Extension of renormalized coupled-cluster methods including triple excitations to excited electronic states of open-shell molecules
,”
J. Chem. Phys.
122
,
214107
(
2005
).
92.
P. D.
Dau
,
J.
Su
,
H.-T.
Liu
,
D.-L.
Huang
,
J.
Li
, and
L.-S.
Wang
, “
Photoelectron spectroscopy and the electronic structure of the uranyl tetrachloride dianion: UO2
${\rm Cl}_4^{2}$
Cl 42
,”
J. Chem. Phys.
137
,
064315
(
2012
).
93.
P. D.
Dau
,
J.
Su
,
H.-T.
Liu
,
J.-B.
Liu
,
D.-L.
Huang
,
J.
Li
, and
L.-S.
Wang
, “
Observation and investigation of the uranyl tetrafluoride dianion (2F
${\rm UO}_4^{2-}$
UO 42
) and its solvation complexes with water and acetonitrile
,”
Chem. Sci.
3
,
1137
(
2012
).
94.
X.
Cao
and
M.
Dolg
, “
Segmented contraction scheme for small-core actinide pseudopotential basis sets
,”
J. Mol. Struct.: THEOCHEM
673
,
203
(
2004
).
95.
T. H.
Dunning
, “
Gaussian basis functions for use in molecular calculations. I. Contraction of (9s5p) atomic basis sets for the first-row atoms
,”
J. Chem. Phys.
53
,
2823
(
1970
).
96.
W.
Küchle
,
M.
Dolg
,
H.
Stoll
, and
H.
Preuss
, “
Ab initio pseudopotentials for Hg through Rn
,”
Mol. Phys.
74
,
1245
(
1991
).
97.
A. D.
Becke
, “
Density-functional thermochemistry. III. The role of exact exchange
,”
J. Chem. Phys.
98
,
5648
(
1993
).
98.
M.
Valiev
,
E.
Bylaska
,
N.
Govind
,
K.
Kowalski
,
T.
Straatsma
,
H.
van Dam
,
D.
Wang
,
J.
Nieplocha
,
E.
Apra
,
T.
Windus
, and
W.
de Jong
, “
NWCHEM: A comprehensive and scalable open-source solution for large scale molecular simulations
,”
Comput. Phys. Commun.
181
,
1477
(
2010
).
99.
H.
van Dam
,
W. A.
de Jong
,
E.
Bylaska
,
N.
Govind
,
K.
Kowalski
,
T.
Straatsma
, and
M.
Valiev
, “
NWCHEM: Scalable parallel computational chemistry
,”
Rev. Comput. Mol. Sci.
1
,
888
(
2011
).
100.
NWCHEM version 6.1, http://www.nwchem-sw.org.
101.
C.
Adamo
and
V.
Barone
, “
Toward reliable density functional methods without adjustable parameters: The PBE0 model
,”
J. Chem. Phys.
110
,
6158
(
1999
).
102.
K.
Kowalski
,
R. M.
Olson
,
S.
Krishnamoorthy
,
V.
Tipparaju
, and
E.
Apra
, “
Role of many-body effects in describing low-lying excited states of pi-conjugated chromophores: High-level equation-of-motion coupled-cluster studies of fused porphyrin systems
,”
J. Chem. Theory Comput.
7
,
2200
(
2011
).
103.
S.
Refaely-Abramson
,
S.
Sharifzadeh
,
N.
Govind
,
J.
Autschbach
,
J. B.
Neaton
,
R.
Baer
, and
L.
Kronik
, “
Quasiparticle spectra from a non-empirical optimally-tuned range-separated hybrid density functional
,”
Phys. Rev. Lett.
109
,
226405
(
2012
).
104.
S.
Hirata
and
M.
Head-Gordon
, “
Time-dependent density functional theory within the Tamm-Dancoff approximation
,”
Chem. Phys. Lett.
314
,
291
(
1999
).
105.
A.
Klamt
and
G.
Schürmann
, “
COSMO – a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient
,”
J. Chem. Soc., Perkin Trans.
2
,
799
(
1993
).
106.
M. P.
Sanjay
,
A. C.
Kumbharkhane
, and
S. C.
Mehrotra
, “
Dielectric study of dimethyl sulfoxide-water mixtures using the time-domain technique
,”
J. Chem. Soc., Faraday Trans.
88
,
433
(
1992
).
107.
S.
Hirata
, “
Tensor contraction engine: Abstraction and automated parallel implementation of configuration-interaction, coupled-cluster, and many-body perturbation theories
,”
J. Phys. Chem. A
107
,
9887
(
2003
).
108.
S.
Hirata
, “
Higher-order equation-of-motion coupled-cluster methods
,”
J. Chem. Phys.
121
,
51
(
2004
).
109.
S.
Hirata
,
P.-D.
Fan
,
A. A.
Auer
,
M.
Nooijen
, and
P.
Piecuch
, “
Combined coupled-cluster and many-body perturbation theories
,”
J. Chem. Phys.
121
,
12197
(
2004
).
110.
K.
Kowalski
,
S.
Krishnamoorthy
,
R.
Olson
,
V.
Tipparaju
, and
E.
Apra
, “
Scalable implementations of accurate excited-state coupled cluster theories: Application of high-level methods to porphyrin-based systems
,” in
Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis
(
ACM
,
2011
).
111.
DIRAC, a relativistic ab initio electronic structure program, Release DIRAC12 (2012), by
H. J. Aa.
Jensen
,
R.
Bast
,
T.
Saue
, and
L.
Visscher
, with contributions from
V.
Bakken
,
K. G.
Dyall
,
S.
Dubillard
,
U.
Ekström
,
E.
Eliav
,
T.
Enevoldsen
,
T.
Fleig
,
O.
Fossgaard
,
A. S. P.
Gomes
,
T.
Helgaker
,
J. K.
Lærdahl
,
Y. S.
Lee
,
J.
Henriksson
,
M.
Iliaš
,
Ch. R.
Jacob
,
S.
Knecht
,
S.
Komorovský
,
O.
Kullie
,
C. V.
Larsen
,
H. S.
Nataraj
,
P.
Norman
,
G.
Olejniczak
,
J.
Olsen
,
Y. C.
Park
,
J. K.
Pedersen
,
M.
Pernpointner
,
K.
Ruud
,
P.
Sałek
,
B.
Schimmelpfennig
,
J.
Sikkema
,
A. J.
Thorvaldsen
,
J.
Thyssen
,
J.
van Stralen
,
S.
Villaume
,
O.
Visser
,
T.
Winther
, and
S.
Yamamoto
(see http://www.diracprogram.org).
112.
Y.-C.
Park
,
I. S.
Lim
, and
Y.-S.
Lee
, “
Two-component spin-orbit effective core potential calculations with an all-electron relativistic program dirac
,”
Bull. Korean Chem. Soc.
33
,
803
(
2012
).
113.
R. I.
de Kock
,
E. J.
Baerends
,
P. M.
Boerrighter
, and
J. G.
Snijders
, “
On the nature of the first excited-state of uranyl ion
,”
Chem. Phys. Lett.
105
,
308
(
1984
).
114.
P.
Pyykkö
,
J.
Li
, and
N.
Runeberg
, “
Quasirelativistic pseudopotential study of species isoelectronic to uranyl and the equatorial coordination of uranyl
,”
J. Phys. Chem.
98
,
4809
(
1994
).
115.
N.
Kaltsoyannis
, “
Computational study of analogues of the uranyl ion containing the –NUN– unit: Density functional theory calculations on
${\rm UO}_2^{2+}$
UO 22+
, UON+, UN2, UO(NPH3)3+,
${\rm U}{({\rm NPH}_3)}_2^{4+}$
U( NPH 3)24+
, [UCl4NPR3] (R = H, Me), and [UOCl4NP(C6H5)3]
,”
Inorg. Chem.
39
,
6009
(
2000
).
116.
R. A.
Kendall
,
T. H.
Dunning
, and
R. J.
Harrison
, “
Electron-affinities of the 1st-row atoms revisited – systematic basis-sets and wave-functions
,”
J. Chem. Phys.
96
,
6796
(
1992
).
117.
K. G.
Dyall
, “
Relativistic double-zeta, triple-zeta, and quadruple-zeta basis sets for the actinides Ac-Lr
,”
Theor. Chem. Acc.
117
,
483
(
2007
).
118.
B. O.
Roos
,
R.
Lindh
,
P.-A. k.
Malmqvist
,
V.
Veryazov
, and
P.-O.
Widmark
, “
New relativistic ANO basis sets for actinide atoms
,”
Chem. Phys. Lett.
409
,
295
(
2005
).
119.
B. A.
Hess
, “
Relativistic electronic-structure calculations employing a 2-component no-pair formalism with external-fields projection operators
,”
Phys. Rev. A
33
,
3742
(
1986
).
120.
M.
Reiher
and
A.
Wolf
, “
Exact decoupling of the Dirac Hamiltonian. I. General theory
J. Chem. Phys.
121
,
2037
(
2004
).
121.
M.
Reiher
and
A.
Wolf
, “
Exact decoupling of the Dirac Hamiltonian. II. The generalized Douglas-Kroll-Hess transformation up to arbitrary order
,”
J. Chem. Phys.
121
,
10945
(
2004
).
122.
K. D.
Dyall
, “
Formal analysis of effective core potential methods
,”
J. Chem. Inf. Comput. Sci.
41
,
30
(
2001
).
123.
C.
Teichteil
,
L.
Maron
, and
V.
Vallet
, “
Relativistic pseudopotential calculations for electronic excited states
,” in
Theoretical and Computational Chemistry
(
Elsevier B.V.
,
2004
), pp.
476
551
.
124.
S. O.
Odoh
and
G.
Schreckenbach
, “
Theoretical study of the structural properties of plutonium IV and VI complexes
,”
J. Phys. Chem. A
114
,
1957
(
2010
).
125.
G. A.
Shamov
and
G.
Schreckenbach
, “
Theoretical study of the oxygen exchange in uranyl hydroxide. An old riddle solved?
,”
J. Am. Chem. Soc.
130
,
13735
(
2008
).
126.
ADFGUI 2011, SCM, Amsterdam, The Netherlands, http://www.scm.com.
127.
M.
Matsika
and
M.
Pitzer
, “
Actinyl ions in Cs2UO2Cl4
,”
J. Phys. Chem. A
105
,
637
(
2001
).
You do not currently have access to this content.