Second-order many-body perturbation theories for anharmonic vibrational frequencies and zero-point energies of molecules are formulated, implemented, and tested. They solve the vibrational Dyson equation self-consistently by taking into account the frequency dependence of the Dyson self-energy in the diagonal approximation, which is expanded in a diagrammatic perturbation series up to second order. Three reference wave functions, all of which are diagrammatically size consistent, are considered: the harmonic approximation and diagrammatic vibrational self-consistent field (XVSCF) methods with and without the first-order Dyson geometry correction, i.e., XVSCF[n] and XVSCF(n), where n refers to the truncation rank of the Taylor-series potential energy surface. The corresponding second-order perturbation theories, XVH2(n), XVMP2[n], and XVMP2(n), are shown to be rigorously diagrammatically size consistent for both total energies and transition frequencies, yield accurate results (typically within a few cm−1 at n = 4 for water and formaldehyde) for both quantities even in the presence of Fermi resonance, and have access to fundamentals, overtones, and combinations as well as their relative intensities as residues of the vibrational Green's functions. They are implemented into simple algorithms that require only force constants and frequencies of the reference methods (with no basis sets, quadrature, or matrix diagonalization at any stage of the calculation). The rules for enumerating and algebraically interpreting energy and self-energy diagrams are elucidated in detail.

1.
S.
Hirata
,
M.
Keçeli
, and
K.
Yagi
,
J. Chem. Phys.
133
,
034109
(
2010
).
2.
M.
Keçeli
and
S.
Hirata
,
J. Chem. Phys.
135
,
134108
(
2011
).
3.
M. R.
Hermes
,
M.
Keçeli
, and
S.
Hirata
,
J. Chem. Phys.
136
,
234109
(
2012
).
4.
M. R.
Hermes
and
S.
Hirata
, “
First-order Dyson coordinates and geometry
,”
J. Phys. Chem. A
(published online).
5.
G. D.
Carney
,
L. L.
Sprandel
, and
C. W.
Kern
,
Adv. Chem. Phys.
37
,
305
(
1978
).
6.
J. M.
Bowman
,
J. Chem. Phys.
68
,
608
(
1978
).
7.
M. A.
Ratner
and
R. B.
Gerber
,
J. Phys. Chem.
90
,
20
(
1986
).
8.
J. M.
Bowman
,
Acc. Chem. Res.
19
,
202
(
1986
).
9.
P.
Choquard
,
The Anharmonic Crystal
(
Benjamin
,
New York
,
1967
).
10.
N. S.
Gillis
,
N. R.
Werthamer
, and
T. R.
Koehler
,
Phys. Rev.
165
,
951
(
1968
).
11.
J.
Cao
and
G. A.
Voth
,
J. Chem. Phys.
102
,
3337
(
1995
).
12.
N.
Makri
,
J. Phys. Chem. B
103
,
2823
(
1999
).
13.
J. B.
Foresman
,
M.
Head-Gordon
,
J. A.
Pople
, and
M. J.
Frisch
,
J. Phys. Chem.
96
,
135
(
1992
).
14.
L. S.
Norris
,
M. A.
Ratner
,
A. E.
Roitberg
, and
R. B.
Gerber
,
J. Chem. Phys.
105
,
11261
(
1996
).
15.
O.
Christiansen
,
J. Chem. Phys.
119
,
5773
(
2003
).
16.
K.
Yagi
,
S.
Hirata
, and
K.
Hirao
,
J. Chem. Phys.
127
,
034111
(
2007
).
17.
O.
Christiansen
,
J. Chem. Phys.
120
,
2149
(
2004
).
18.
I.
Shavitt
and
R. J.
Bartlett
,
Many-Body Methods in Chemistry and Physics
(
Cambridge University Press
,
Cambridge
,
2009
).
19.
S.
Hirata
,
Theor. Chem. Acc.
129
,
727
(
2011
).
20.
R. D.
Amos
,
N. C.
Handy
,
W. H.
Green
,
D.
Jayatilaka
,
A.
Willetts
, and
P.
Palmieri
,
J. Chem. Phys.
95
,
8323
(
1991
).
21.
K.
Yagi
,
S.
Hirata
, and
K.
Hirao
,
Phys. Chem. Chem. Phys.
10
,
1781
(
2008
).
22.
W.
Jones
and
N. H.
March
,
Theoretical Solid State Physics
(
Wiley
,
New York
,
1973
).
23.
A. A.
Maradudin
and
A. E.
Fein
,
Phys. Rev.
128
,
2589
(
1962
).
24.
25.
J.
Goldstone
,
Proc. R. Soc. London, Ser. A
239
,
267
(
1957
).
26.
S.
Hirata
,
M.
Keçeli
,
Y.-Y.
Ohnishi
,
O.
Sode
, and
K.
Yagi
,
Annu. Rev. Phys. Chem.
63
,
131
(
2012
).
27.
M. V.
Kuzmin
and
A. A.
Stuchebrukhov
,
Chem. Phys. Lett.
119
,
556
(
1985
).
28.
A. A.
Stuchebrukhov
,
J. Mol. Struct.
178
,
261
(
1988
).
29.
O. V.
Boyarkin
,
S. I.
Ionov
,
A. A.
Stuchebrukhov
,
V. N.
Bagratashvili
, and
M. S.
Djidjoev
,
J. Phys. Chem.
94
,
1294
(
1990
).
30.
A.
Szabo
and
N. S.
Ostlund
,
Modern Quantum Chemistry
(
Dover
,
New York
,
1996
).
31.
R. D.
Mattuck
,
A Guide to Feynman Diagrams in the Many-Body Problem
(
Dover
,
New York
,
1992
).
32.
N. H.
March
,
W. H.
Young
, and
S.
Sampanthar
,
The Many-Body Problem in Quantum Mechanics
(
Cambridge University Press
,
London
,
1967
).
33.
A. L.
Fetter
and
J. D.
Walecka
,
Quantum Theory of Many-Particle Systems
(
McGraw-Hill
,
New York
,
1971
).
34.
V. V.
Goldman
,
G. K.
Horton
, and
M. L.
Klein
,
Phys. Rev. Lett.
21
,
1527
(
1968
).
35.
T. R.
Koehler
,
Phys. Rev. Lett.
22
,
777
(
1969
).
36.
J. M. L.
Martin
,
T. J.
Lee
,
P. R.
Taylor
, and
J.-P.
François
,
J. Chem. Phys.
103
,
2589
(
1995
).
37.
V.
Barone
and
C.
Minichino
,
J. Mol. Struct.: THEOCHEM
330
,
365
(
1995
).
38.
V.
Barone
,
J. Chem. Phys.
120
,
3059
(
2004
).
39.
V.
Barone
,
J. Chem. Phys.
122
,
014108
(
2005
).
40.
D. A.
Matthews
,
J.
Vázquez
, and
J. F.
Stanton
,
Mol. Phys.
105
,
2659
(
2007
).
41.
J.
Vázquez
and
J. F.
Stanton
,
Mol. Phys.
105
,
101
(
2007
).
42.
D. A.
Matthews
and
J. F.
Stanton
,
Mol. Phys.
107
,
213
(
2009
).
43.
I. M.
Mills
and
A. G.
Robiette
,
Mol. Phys.
56
,
743
(
1985
).
44.
J.
Oddershede
,
P.
Jørgensen
, and
N. H. F.
Beebe
,
Int. J. Quantum Chem.
12
,
655
(
1977
).
45.
S. R.
Gwaltney
,
M.
Nooijen
, and
R. J.
Bartlett
,
Chem. Phys. Lett.
248
,
189
(
1996
).
46.
M.
Valiev
,
E. J.
Bylaska
,
N.
Govind
,
K.
Kowalski
,
T. P.
Straatsma
,
H. J. J.
Van Dam
,
D.
Wang
,
J.
Nieplocha
,
E.
Apra
,
T. L.
Windus
 et al.,
Comput. Phys. Commun.
181
,
1477
(
2010
).
47.
K.
Yagi
, SINDO (The University of Tokyo,
2006
).
48.
M.
Keçeli
, MAVI (University of Illinois at Urbana-Champaign,
2011
).
You do not currently have access to this content.