We recently introduced a low-cost quantum chemistry method for computing intermolecular interactions, combining a monomer-based self-consistent field calculation (the “explicit polarization” method, XPol) with pairwise-additive symmetry adapted perturbation theory (SAPT). The method uses Kohn-Sham (KS) orbitals in the SAPT formalism but replaces the SAPT dispersion and exchange-dispersion terms with empirical potentials (“+D”), and we called this method XPol+SAPT(KS)+D. Here, we report a second-generation version of this approach, XPol+SAPT(KS)+D2 or XSAPT(KS)+D2 for short, in which we have modified the form of the empirical atom–atom dispersion potentials. Accurate binding energies are obtained for benchmark databases of dimer binding energies, and potential energy curves are captured accurately for a variety of challenging systems. We suggest that using different asymptotic corrections for different monomers is necessary to get good binding energies in general, especially for hydrogen-bonded complexes. As compared to our original “+D” formulation, the second-generation “+D2” method accurately reproduces not only total binding energies but also the various components of the interaction energy, and on this basis we introduce an energy decomposition scheme that extends traditional SAPT energy decomposition to systems containing more than two monomers. For |$\rm (H_2O)_6$|(H2O)6, the many-body contribution to the interaction energy agrees well with that obtained from traditional Kitaura-Morokuma energy decomposition analysis in a large basis set.

1.
E.
Aprà
,
A. P.
Rendell
,
R. J.
Harrison
,
V.
Tipparaju
,
W. A.
de Jong
, and
S. S.
Xantheas
, “
Liquid water: Obtaining the right answer for the right reasons
,” in
Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis, SC '09
(
ACM
,
New York
,
2009
), pp.
66
1
.
2.
D.
Cremer
,
WIREs Comput. Mol. Sci.
1
,
509
(
2011
).
3.
S.
Grimme
,
L.
Goerigk
, and
R. F.
Fink
,
WIREs Comput. Mol. Sci.
2
,
886
(
2012
).
4.
K. E.
Riley
,
J. A.
Platts
,
J.
Řezác
,
P.
Hobza
, and
J. G.
Hill
,
J. Phys. Chem. A
116
,
4159
(
2012
).
5.
R. A.
DiStasio
 Jr.
, and
M.
Head-Gordon
,
Mol. Phys.
105
,
1073
(
2007
).
6.
K. E.
Riley
,
J.
Řezác
, and
P.
Hobza
,
Phys. Chem. Chem. Phys.
13
,
21121
(
2011
).
7.
P.
Hobza
,
Acc. Chem. Res.
45
,
663
(
2012
).
8.
S.
Grimme
,
WIREs Comput. Mol. Sci.
1
,
211
(
2011
).
9.
J.
Klimeš
and
A.
Michaelides
,
J. Chem. Phys.
137
,
120901
(
2012
).
10.
Y.
Zhao
and
D. G.
Truhlar
,
Theor. Chem. Acc.
120
,
215
(
2008
).
11.
J.-D.
Chai
and
M.
Head-Gordon
,
Phys. Chem. Chem. Phys.
10
,
6615
(
2008
).
12.
S.
Grimme
,
J. Comput. Chem.
27
,
1787
(
2006
).
13.
L.
Goerigk
,
H.
Kruse
, and
S.
Grimme
,
ChemPhysChem
12
,
3421
(
2011
).
14.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
,
J. Chem. Phys.
132
,
154104
(
2010
).
15.
L. A.
Burns
,
A. V.
Mayagoitia
,
B. G.
Sumpter
, and
C. D.
Sherrill
,
J. Chem. Phys.
134
,
084107
(
2011
).
16.
Y.-S.
Lin
,
G.-D.
Li
,
S.-P.
Mao
, and
J.-D.
Chai
,
J. Chem. Theory Comput.
9
,
263
(
2013
).
17.
K.
Lee
,
É. D.
Murray
,
L.
Kong
,
B. I.
Lundqvist
, and
D. C.
Langreth
,
Phys. Rev. B
82
,
081101
(
2010
).
18.
O. A.
Vydrov
and
T.
Van Voorhis
,
Phys. Rev. Lett.
103
,
063004
(
2009
).
19.
O. A.
Vydrov
and
T.
Van Voorhis
,
J. Chem. Phys.
133
,
244103
(
2010
).
20.
O. A.
Vydrov
and
T.
Van Voorhis
,
J. Chem. Theory Comput.
8
,
1929
(
2012
).
21.
M. S.
Gordon
,
L. V.
Slipchenko
,
H.
Li
, and
J. H.
Jensen
,
Annu. Rep. Comput. Chem.
3
,
177
(
2007
).
22.
M. S.
Gordon
,
D. G.
Fedorov
,
S. R.
Pruitt
, and
L. V.
Slipchenko
,
Chem. Rev.
112
,
632
(
2012
).
23.
D. G.
Fedorov
,
T.
Nagata
, and
K.
Kitaura
,
Phys. Chem. Chem. Phys.
14
,
7562
(
2012
).
24.
S.
Wen
,
K.
Nanda
,
Y.
Huang
, and
G. J. O.
Beran
,
Phys. Chem. Chem. Phys.
14
,
7578
(
2012
).
25.
R. M.
Richard
and
J. M.
Herbert
,
J. Chem. Phys.
137
,
064113
(
2012
).
26.
L. D.
Jacobson
,
R. M.
Richard
,
K. U.
Lao
, and
J. M.
Herbert
, “
Efficient monomer-based quantum chemistry methods for molecular and ionic clusters
,”
Annu. Rep. Comput. Chem.
(in press).
27.
L. D.
Jacobson
and
J. M.
Herbert
,
J. Chem. Phys.
134
,
094118
(
2011
).
28.
J. M.
Herbert
,
L. D.
Jacobson
,
K. U.
Lao
, and
M. A.
Rohrdanz
,
Phys. Chem. Chem. Phys.
14
,
7679
(
2012
).
29.
K. U.
Lao
and
J. M.
Herbert
,
J. Phys. Chem. Lett.
3
,
3241
(
2012
).
30.
In previous work, we have used the acronym “XPS” instead of XSAPT, but this risks confusion with X-ray photoelectron spectroscopy.
31.
W.
Xie
,
L.
Song
,
D. G.
Truhlar
, and
J.
Gao
,
J. Chem. Phys.
128
,
234108
(
2008
).
32.
B.
Jeziorski
,
R.
Moszynski
, and
K.
Szalewicz
,
Chem. Rev.
94
,
1887
(
1994
).
33.
K.
Szalewicz
,
WIREs Comput. Mol. Sci.
2
,
254
(
2012
).
34.
E. G.
Hohenstein
and
C. D.
Sherrill
,
WIREs Comput. Mol. Sci.
2
,
304
(
2012
).
35.
H. L.
Williams
and
C. F.
Chabalowski
,
J. Phys. Chem. A
105
,
646
(
2001
).
36.
A. J.
Misquitta
and
K.
Szalewicz
,
Chem. Phys. Lett.
357
,
301
(
2002
).
37.
S. M.
Cybulski
and
M. L.
Lytle
,
J. Chem. Phys.
127
,
141102
(
2007
).
38.
A.
Hesselmann
,
J. Phys. Chem. A
115
,
11321
(
2011
).
39.
T.
Takatani
,
E. G.
Hohenstein
,
M.
Malagoli
,
M. S.
Marshall
, and
C. D.
Sherrill
,
J. Chem. Phys.
132
,
144104
(
2010
).
40.
J.
Řezác
,
K. E.
Riley
, and
P.
Hobza
,
J. Chem. Theory Comput.
7
,
2427
(
2011
).
41.
J. C.
Flick
,
D.
Kosenkov
,
E. G.
Hohenstein
,
C. D.
Sherrill
, and
L. V.
Slipchenko
,
J. Chem. Theory Comput.
8
,
2835
(
2012
).
42.
R.
Podeszwa
,
K.
Pernal
,
K.
Patkowski
, and
K.
Szalewicz
,
J. Phys. Chem. Lett.
1
,
550
(
2010
).
43.
G.
Chałasiński
,
M. M.
Szczȩśniak
, and
R. A.
Kendall
,
J. Chem. Phys.
101
,
8860
(
1994
).
44.
N.
Turki
,
A.
Milet
,
A.
Rahmouni
,
O.
Ouamerali
,
R.
Moszynski
,
E.
Kochanski
, and
P. E. S.
Wormer
,
J. Chem. Phys.
109
,
7157
(
1998
).
45.
J. M.
Pedulla
,
K.
Kim
, and
K. D.
Jordan
,
Chem. Phys. Lett.
291
,
78
(
1998
).
46.
T. P.
Tauer
and
C. D.
Sherrill
,
J. Phys. Chem. A
109
,
10475
(
2005
).
47.
A. L.
Ringer
and
C. D.
Sherrill
,
Chem. Eur. J.
14
,
2542
(
2008
).
48.
Y.
Chen
and
H.
Li
,
J. Phys. Chem. A
114
,
11719
(
2010
).
49.
C. M.
Breneman
and
K. B.
Wiberg
,
J. Comput. Chem.
11
,
361
(
1990
).
50.
V. F.
Lotrich
and
K.
Szalewicz
,
J. Chem. Phys.
106
,
9668
(
1997
).
51.
V. F.
Lotrich
and
K.
Szalewicz
,
J. Chem. Phys.
112
,
112
(
2000
).
52.
B.
Jeziorski
,
R.
Moszynski
,
A.
Ratkiewicz
,
S.
Rybak
,
K.
Szalewicz
, and
H. L.
Williams
, “
SAPT: A program for many-body symmetry-adapted perturbation theory calculations of intermolecular interaction energies
,” in
Methods and Techniques in Computational Chemistry: METECC-94
, edited by
E.
Clementi
(
STEF
,
Cagliari
,
1993
), Vol.
B
, Chap. 3, pp.
79
129
.
53.
K.
Patkowski
,
K.
Szalewicz
, and
B.
Jeziorski
,
J. Chem. Phys.
125
,
154107
(
2006
).
54.
K.
Patkowski
,
K.
Szalewicz
, and
B.
Jeziorski
,
Theor. Chem. Acc.
127
,
211
(
2010
).
55.
K. U.
Lao
and
J. M.
Herbert
,
J. Phys. Chem. A
116
,
3042
(
2012
).
56.
K.
Pernal
,
R.
Podeszwa
,
K.
Patkowski
, and
K.
Szalewicz
,
Phys. Rev. Lett.
103
,
263201
(
2009
).
57.
K. T.
Tang
and
J. P.
Toennies
,
J. Chem. Phys.
80
,
3726
(
1984
).
58.
A. J.
Misquitta
,
R.
Podeszwa
,
B.
Jeziorski
, and
K.
Szalewicz
,
J. Chem. Phys.
123
,
214103
(
2005
).
59.
F.
Weigend
and
R.
Ahlrichs
,
Phys. Chem. Chem. Phys.
7
,
3297
(
2005
).
60.
B.
Wang
and
D. G.
Truhlar
,
J. Chem. Theory Comput.
6
,
3330
(
2010
).
61.
A. W.
Lange
and
J. M.
Herbert
,
J. Am. Chem. Soc.
131
,
3913
(
2009
).
62.
A. W.
Lange
,
M. A.
Rohrdanz
, and
J. M.
Herbert
,
J. Phys. Chem. B
112
,
6304
(
2008
).
63.
M. A.
Rohrdanz
and
J. M.
Herbert
,
J. Chem. Phys.
129
,
034107
(
2008
).
64.
M. A.
Rohrdanz
,
K. M.
Martins
, and
J. M.
Herbert
,
J. Chem. Phys.
130
,
054112
(
2009
).
65.
T. M.
Henderson
,
B. G.
Janesko
, and
G. E.
Scuseria
,
J. Chem. Phys.
128
,
194105
(
2008
).
66.
R.
Baer
,
E.
Livshits
, and
U.
Salzner
,
Annu. Rev. Phys. Chem.
61
,
85
(
2010
).
67.
A.
Heßelmann
,
G.
Jansen
, and
M.
Schütz
,
J. Chem. Phys.
122
,
014103
(
2005
).
68.
See supplementary material at http://dx.doi.org/10.1063/1.4813523 for |$s^{}_\beta$|sβ and ω parameters, a discussion of |$\rm (H_2O)_6$|(H2O)6 benchmarks, and benchmark data for halide–water clusters.
69.
E. G.
Hohenstein
and
C. D.
Sherrill
,
J. Chem. Phys.
132
,
184111
(
2010
).
70.
E. G.
Hohenstein
and
C. D.
Sherrill
,
J. Chem. Phys.
133
,
014101
(
2010
).
71.
P.
Jurečka
,
J.
Šponer
,
J.
Černý
, and
P.
Hobza
,
Phys. Chem. Chem. Phys.
8
,
1985
(
2006
).
72.
M. S.
Marshall
,
L. A.
Burns
, and
C. D.
Sherrill
,
J. Chem. Phys.
135
,
194102
(
2011
).
73.
T.
Helgaker
,
P.
Jørgensen
, and
J.
Olsen
,
Molecular Electronic-Structure Theory
(
Wiley
,
New York
,
2000
).
74.
C. D.
Sherrill
,
T.
Takatani
, and
E. G.
Hohenstein
,
J. Phys. Chem. A
113
,
10146
(
2009
).
75.
D. M.
Bates
,
J. R.
Smith
,
T.
Janowski
, and
G. S.
Tschumper
,
J. Chem. Phys.
135
,
044123
(
2011
).
76.
E. E.
Dahlke
and
D. G.
Truhlar
,
J. Chem. Theory Comput.
3
,
1342
(
2007
).
77.
H. R.
Leverentz
and
D. G.
Truhlar
,
J. Chem. Theory Comput.
5
,
1573
(
2009
).
78.
R.
Bukowski
,
W.
Cencek
,
P.
Jankowski
,
B.
Jeziorski
,
M.
Jeziorska
,
S. A.
Kucharski
,
V. F.
Lotrich
,
A. J.
Misquitta
,
R.
Moszynski
,
K.
Patkowski
,
R.
Podeszwa
,
S.
Rybak
,
K.
Szalewicz
,
H. L.
Williams
,
R. J.
Wheatley
,
P. E. S.
Wormer
, and
P. S.
Żuchowski
,
SAPT2008: An Ab Initio Program for Many-Body Symmetry-Adapted Perturbation Theory Calculations of Intermolecular Interaction Energies
(
University of Delaware
,
2008
).
79.
V.
Saunders
and
M.
Guest
,
ATMOL Program Package
(
SERC Daresbury Laboratory
,
Daresbury, UK
).
80.
F.
Neese
,
WIREs Comput. Mol. Sci.
2
,
73
(
2012
).
81.
CFOUR, a quantum chemical program package written by
J. F.
Stanton
,
J.
Gauss
,
M. E.
Harding
, and
P. G.
Szalay
with contributions from
A. A.
Auer
,
R. J.
Bartlett
,
U.
Benedikt
,
C.
Berger
,
D. E.
Bernholdt
,
Y. J.
Bomble
,
O.
Christiansen
,
M.
Heckert
,
O.
Heun
,
C.
Huber
,
T.-C.
Jagau
,
D.
Jonsson
,
J.
Jusélius
,
K.
Klein
,
W. J.
Lauderdale
,
D. A.
Matthews
,
T.
Metzroth
,
D. P.
O'Neill
,
D. R.
Price
,
E.
Prochnow
,
K.
Ruud
,
F.
Schiffmann
,
S.
Stopkowicz
,
A.
Tajti
,
J.
Vázquez
,
F.
Wang
,
J. D.
Watts
and the integral packages MOLECULE (
J.
Almlf
and
P. R.
Taylor
), PROPS (
P. R.
Taylor
), ABACUS (
T.
Helgaker
,
H. J. A.
Jensen
,
P.
Jørgensen
, and
J.
Olsen
), and ECP routines by
A. V.
Mitin
and
C.
van Wllen
. For the current version, see http://www.cfour.de.
82.
M. E.
Harding
,
T.
Metzroth
, and
J.
Gauss
,
J. Chem. Theory Comput.
4
,
64
(
2008
).
83.
Y.
Shao
,
L.
Fusti-Molnar
,
Y.
Jung
,
J.
Kussmann
,
C.
Ochsenfeld
,
S. T.
Brown
,
A. T. B.
Gilbert
,
L. V.
Slipchenko
,
S. V.
Levchenko
,
D. P.
O'Neill
,
R. A.
DiStasio
 Jr.
,
R. C.
Lochan
,
T.
Wang
,
G. J. O.
Beran
,
N. A.
Besley
,
J. M.
Herbert
,
C. Y.
Lin
,
T.
Van Voorhis
,
S. H.
Chien
,
A.
Sodt
,
R. P.
Steele
,
V. A.
Rassolov
,
P. E.
Maslen
,
P. P.
Korambath
,
R. D.
Adamson
,
B.
Austin
,
J.
Baker
,
E. F. C.
Byrd
,
H.
Dachsel
,
R. J.
Doerksen
,
A.
Dreuw
,
B. D.
Dunietz
,
A. D.
Dutoi
,
T. R.
Furlani
,
S. R.
Gwaltney
,
A.
Heyden
,
S.
Hirata
,
C.-P.
Hsu
,
G.
Kedziora
,
R. Z.
Khalliulin
,
P.
Klunzinger
,
A. M.
Lee
,
M. S.
Lee
,
W.
Liang
,
I.
Lotan
,
N.
Nair
,
B.
Peters
,
E. I.
Proynov
,
P. A.
Pieniazek
,
Y. M.
Rhee
,
J.
Ritchie
,
E.
Rosta
,
C. D.
Sherrill
,
A. C.
Simmonett
,
J. E.
Subotnik
,
H. L.
Woodcock
 III
,
W.
Zhang
,
A. T.
Bell
,
A. K.
Chakraborty
,
D. M.
Chipman
,
F. J.
Keil
,
A.
Warshel
,
W. J.
Hehre
,
H. F.
Schaefer
 III
,
J.
Kong
,
A. I.
Krylov
,
P. M. W.
Gill
, and
M.
Head-Gordon
,
Phys. Chem. Chem. Phys.
8
,
3172
(
2006
).
84.
A. I.
Krylov
and
P. M. W.
Gill
,
WIREs Comput. Mol. Sci.
3
,
317
(
2013
).
85.
S. F.
Boys
and
F.
Bernardi
,
Mol. Phys.
19
,
553
(
1970
).
86.
W.
Xie
and
J.
Gao
,
J. Chem. Theory Comput.
3
,
1890
(
2007
).
87.
J.
Han
,
D. G.
Truhlar
, and
J.
Gao
,
Theor. Chem. Acc.
131
,
1161
(
2012
).
88.
R.
Moszynski
,
B.
Jeziorski
,
S.
Rybak
,
K.
Szalewicz
, and
H. L.
Williams
,
J. Chem. Phys.
100
,
5080
(
1994
).
89.
T.
Korona
,
R.
Moszynski
, and
B.
Jeziorski
,
Mol. Phys.
100
,
1723
(
2002
).
90.
A. J.
Misquitta
and
K.
Szalewicz
,
J. Chem. Phys.
122
,
214109
(
2005
).
91.
K.
Kitaura
and
K.
Morokuma
,
Int. J. Quantum Chem.
10
,
325
(
1976
).
92.
W.
Gao
,
H.
Fen
,
X.
Xuan
, and
L.
Chen
,
J. Mol. Model.
18
,
4577
(
2012
).
93.
J.
Řezác
,
K. E.
Riley
, and
P.
Hobza
,
J. Chem. Theory Comput.
7
,
3466
(
2011
).
94.
J. M.
Herbert
and
M.
Head-Gordon
,
J. Am. Chem. Soc.
128
,
13932
(
2006
).
95.
D. M.
Bates
and
G. S.
Tschumper
,
J. Phys. Chem. A
113
,
3555
(
2009
).
96.
U.
Góra
,
R.
Podeszwa
,
W.
Cencek
, and
K.
Szalewicz
,
J. Chem. Phys.
135
,
224102
(
2011
).
97.
P.
Matczak
,
J. Phys. Chem. A
116
,
8731
(
2012
).
98.
R. M.
Richard
and
J. M.
Herbert
,
J. Chem. Theory Comput.
9
,
1408
(
2013
).
99.
A.
Heßelmann
and
G.
Jansen
,
Chem. Phys. Lett.
357
,
464
(
2002
).
100.
G. J. O.
Beran
,
J. Chem. Phys.
130
,
164115
(
2009
).
101.
N.
Mardirossian
,
D. S.
Lambrecht
,
L.
McCaslin
,
S. S.
Xantheas
, and
M.
Head-Gordon
,
J. Chem. Theory Comput.
9
,
1368
(
2013
).

Supplementary Material

You do not currently have access to this content.