The equilibrium geometric structures, relative stabilities, and electronic properties of AunC and Aun+1 (n = 1–10) clusters are systematically investigated using density functional theory with hyper-generalized gradient approximation. The optimized geometries show that one Au atom capped on Aun−1C clusters is a dominant growth pattern for AunC clusters. In contrast to Aun+1 clusters, AunC clusters are most stable in a quasi-planar or three-dimensional structure because C doping induces the local non-planarity while the rest of the structure continues to grow in a planar mode, resulting in an overall non-2D configuration. The relative stability calculations show that the impurity C atom can significantly enhance the thermodynamic stability of pure gold clusters. Moreover, the effect of C atom on the Aun host decreases with the increase of cluster size. The HOMO-LUMO gap curves show that the interaction of the C atom with Aun clusters improves the chemical stability of pure gold clusters, except for Au3 and Au4 clusters. In addition, a natural population analysis shows that the charges in corresponding AunC clusters transfer from the Aun host to the C atom. Meanwhile, a natural electronic configuration analysis also shows that the charges mainly transfer between the 2s and 2p orbitals within the C atom.

2.
A. S. K.
Hashmi
and
G. J.
Hutchings
,
Angew. Chem., Int. Ed.
45
,
7896
(
2006
).
3.
B. M.
Trost
,
Angew. Chem., Int. Ed.
34
,
259
(
1995
).
4.
G. C.
Bond
and
D. T.
Thompson
,
Catal. Rev.
41
,
319
(
1999
).
5.
G. J.
Hutchings
,
Catal. Today
100
,
55
(
2005
).
7.
J.
Das
,
M. A.
Aziz
, and
H.
Yang
,
J. Am. Chem. Soc.
128
,
16022
(
2006
).
8.
A.
Corma
and
H.
Garcia
,
Chem. Soc. Rev.
37
,
2096
(
2008
).
9.
L. S.
Ott
and
R. G.
Finke
,
Coord. Chem. Rev.
251
,
1075
(
2007
).
10.
J. D.
Aiken
 III
and
R. G.
Finke
,
J. Mol. Catal. A: Chem.
145
,
1
(
1999
).
11.
F.
Furche
,
R.
Ahlrichs
,
P.
Weis
,
C.
Jacob
,
S.
Gilb
,
T.
Bierweiler
, and
M. M.
Kappes
,
J. Chem. Phys.
117
,
6982
(
2002
).
12.
H.
Häkkinen
,
B.
Yoon
,
U.
Landman
,
X.
Li
,
H. J.
Zhai
, and
L. S.
Wang
,
J. Phys. Chem. A
107
,
6168
(
2003
).
13.
H.
Häkkinen
,
M.
Moseler
, and
U.
Landman
,
Phys. Rev. Lett.
89
,
033401
(
2002
).
14.
W.
Huang
and
L. S.
Wang
,
Phys. Rev. Lett.
102
,
153401
(
2009
).
15.
X.
Xing
,
B.
Yoon
,
U.
Landman
, and
J. H.
Parks
,
Phys. Rev. B
74
,
165423
(
2006
).
16.
S.
Bulusu
,
X.
Li
,
L. S.
Wang
, and
X. C.
Zeng
,
Proc. Natl. Acad. Sci. U.S.A.
103
,
8326
(
2006
).
17.
J.
Li
,
X.
Li
,
H. J.
Zhai
, and
L. S.
Wang
,
Science
299
,
864
(
2003
).
18.
S.
Bulusu
,
X.
Li
,
L. S.
Wang
, and
X. C.
Zeng
,
J. Phys. Chem. C
111
,
4190
(
2007
).
19.
B.
Yoon
,
P.
Koskinen
,
B.
Huber
,
O.
Kostko
,
B.
von Issendorff
,
H.
Häkkinen
,
M.
Moseler
, and
U.
Landman
,
Chem. Phys. Chem.
8
,
157
(
2007
).
20.
N.
Shao
,
W.
Huang
,
Y.
Gao
,
L. M.
Wang
,
X.
Li
,
L. S.
Wang
, and
X. C.
Zeng
,
J. Am. Chem. Soc.
132
,
6596
(
2010
).
21.
A.
Lechtken
,
D.
Schooss
,
J. R.
Stairs
,
M. N.
Blom
,
F.
Furche
,
N.
Morgner
,
O.
Kostko
,
B.
von Issendorff
, and
M. M.
Kappes
,
Angew. Chem., Int. Ed.
46
,
2944
(
2007
).
22.
M.
Ji
,
X.
Gu
,
X.
Li
,
X.
Gong
,
J.
Li
, and
L. S.
Wang
,
Angew. Chem.
117
,
7281
(
2005
).
23.
J. P.
Doye
and
D. J.
Wales
,
New J. Chem.
22
,
733
(
1998
).
24.
W.
Huang
,
M.
Ji
,
C. D.
Dong
,
X.
Gu
,
L. M.
Wang
,
X. G.
Gong
, and
L. S.
Wang
,
ACS Nano
2
,
897
(
2008
).
25.
K.
Michaelian
,
N.
Rendon
, and
I.
Garzón
,
Phys. Rev. B
60
,
2000
(
1999
).
26.
I.
Garzón
,
K.
Michaelian
,
M.
Beltrán
,
A.
Posada-Amarillas
,
P.
Ordejón
,
E.
Artacho
,
D.
Sánchez-Portal
, and
J.
Soler
,
Phys. Rev. Lett.
81
,
1600
(
1998
).
27.
L. M.
Wang
and
L. S.
Wang
,
Nanoscale
4
,
4038
(
2012
).
28.
G.
Jian-Jun
,
Y.
Ji-Xian
, and
D.
Dong
,
Physica B
367
,
158
(
2005
)
29.
G.
Jian-Jun
,
Y.
Ji-Xian
, and
D.
Dong
,
J. Mol. Struct.: THEOCHEM
764
,
117
(
2006
).
30.
S. J.
Wang
,
X. Y.
Kuang
,
C.
Lu
,
Y. F.
Li
, and
Y. R.
Zhao
,
Phys. Chem. Chem. Phys.
13
,
10119
(
2011
).
31.
Y.
Li
,
Y. P.
Cao
,
Y. F.
Li
,
S. P.
Shi
, and
X. Y.
Kuang
,
Eur. Phys. J. D
66
,
10
(
2012
).
32.
L. M.
Wang
,
R.
Pal
,
W.
Huang
,
X. C.
Zeng
, and
L. S.
Wang
,
J. Chem. Phys.
132
,
114306
(
2010
).
33.
D.
Yuan
,
Y.
Wang
, and
Z.
Zeng
,
J. Chem. Phys.
122
,
114310
(
2005
).
34.
D.
Dong
,
K.
Xiao-Yu
,
Z.
Bing
, and
G.
Jian-Jun
,
Physica B
406
,
3160
(
2011
).
35.
D.
Dong
,
K.
Xiao-Yu
,
G.
Jian-Jun
, and
Z.
Ben-Xia
,
J. Phys. Chem. Solids
71
,
770
(
2010
).
36.
D.
Dong
,
Z.
Ben-Xia
, and
Z.
Bing
,
Mol. Phys.
109
,
1709
(
2011
).
37.
H. Q.
Wang
,
X. Y.
Kuang
, and
H. F.
Li
,
J. Phys. Chem. A
113
,
14022
(
2009
).
38.
C.
Majumder
,
A. K.
Kandalam
, and
P.
Jena
,
Phys. Rev. B
74
,
205437
(
2006
).
39.
C.
Rajesh
and
C.
Majumder
,
J. Chem. Phys.
130
,
234309
(
2009
).
40.
C.
Majumder
,
Phys. Rev. B
75
,
235409
(
2007
).
41.
C.
Majumder
and
S.
Kulshreshtha
,
Phys. Rev. B
73
,
155427
(
2006
).
42.
M.
Zhang
,
S.
Chen
,
Q. M.
Deng
,
L. M.
He
,
L. N.
Zhao
, and
Y. H.
Luo
,
Eur. Phys. J. D
58
,
117
(
2010
).
43.
B.
Kiran
,
X.
Li
,
H. J.
Zhai
,
L. F.
Cui
, and
L. S.
Wang
,
Angew. Chem.
116
,
2177
(
2004
).
44.
C.
Pak
,
J. C.
Rienstra-Kiracofe
, and
H. F.
Schaefer
,
J. Phys. Chem. A
104
,
11232
(
2000
).
45.
B.
Kiran
,
X.
Li
,
H.-J.
Zhai
, and
L.-S.
Wang
,
J. Chem. Phys.
125
,
133204
(
2006
).
46.
X.
Li
,
B.
Kiran
, and
L. S.
Wang
,
J. Phys. Chem. A
109
,
4366
(
2005
).
47.
R.
Pal
,
S.
Bulusu
, and
X. C.
Zeng
,
J. Comput. Methods Sci. Eng.
7
,
185
(
2007
).
48.
L. M.
Wang
,
S.
Bulusu
,
W.
Huang
,
R.
Pal
,
L. S.
Wang
, and
X. C.
Zeng
,
J. Am. Chem. Soc.
129
,
15136
(
2007
).
49.
Q.
Sun
,
Q.
Wang
,
G.
Chen
, and
P.
Jena
,
J. Chem. Phys.
127
,
214706
(
2007
).
50.
W.
Fa
and
A.
Yang
,
Phys. Lett. A
372
,
6392
(
2008
).
51.
D.
Balamurugan
,
M. K.
Harbola
, and
R.
Prasad
,
Phys. Rev. A
69
,
033201
(
2004
).
52.
B. R.
Visser
,
M. A.
Addicoat
,
J. R.
Gascooke
,
W. D.
Lawrance
, and
G. F.
Metha
,
J. Chem. Phys.
138
,
174310
(
2013
).
53.
B. W.
Ticknor
,
B.
Bandyopadhyay
, and
M. A.
Duncan
,
J. Phys. Chem. A
112
,
12355
(
2008
).
54.
P.
Zaleski-Ejgierd
and
P.
Pyykkö
,
Can. J. Chem.
87
,
798
(
2009
).
55.
D. Z.
Li
and
S. D.
Li
,
J. Cluster Sci.
22
,
331
(
2011
).
56.
X. Y.
Sun
,
J. G.
Du
, and
G.
Jiang
,
Struct. Chem.
24
,
1289
(
2013
).
57.
M.
Barysz
and
P.
Pyykkö
,
Chem. Phys. Lett.
285
,
398
(
1998
).
58.
P.
Pyykkö
,
M.
Patzschke
, and
J.
Suurpere
,
Chem. Phys. Lett.
381
,
45
(
2003
).
59.
M.
Iwamatsu
and
Y.
Okabe
,
Chem. Phys. Lett.
399
,
396
(
2004
).
60.
H. G.
Kim
,
S. K.
Choi
, and
H. M.
Lee
,
J. Chem. Phys.
128
,
144702
(
2008
).
61.
D. J.
Wales
and
J. P.
Doye
,
J. Chem. Phys. A
101
,
5111
(
1997
).
62.
B.
Delley
,
J. Chem. Phys.
92
,
508
(
1990
).
63.
R. A.
Kendall
,
E.
Aprà
,
D. E.
Bernholdt
,
E. J.
Bylaska
,
M.
Dupuis
,
G. I.
Fann
,
R. J.
Harrison
,
J.
Ju
,
J. A.
Nichols
, and
J.
Nieplocha
,
Comput. Phys. Commun.
128
,
260
(
2000
).
64.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
 et al., GAUSSIAN 09, Revision A.02, Gaussian, Inc., Wallingford, CT,
2009
.
65.
P.
Schwerdtfeger
,
Heteroat. Chem.
13
,
578
(
2002
).
66.
P.
Schwerdtfeger
,
M.
Dolg
,
W. E.
Schwarz
,
G. A.
Bowmaker
, and
P. D.
Boyd
,
J. Chem. Phys.
91
,
1762
(
1989
).
67.
P.
Schwerdtfeger
,
J. Am. Chem. Soc.
111
,
7261
(
1989
).
68.
P.
Schwerdtfeger
,
P. D.
Boyd
,
A. K.
Burrell
,
W. T.
Robinson
, and
M. J.
Taylor
,
Inorg. Chem.
29
,
3593
(
1990
).
69.
P.
Schwerdtfeger
,
P. D.
Boyd
,
S.
Brienne
, and
A. K.
Burrell
,
Inorg. Chem.
31
,
3411
(
1992
).
70.
P.
Schwerdtfeger
and
G. A.
Bowmaker
,
J. Chem. Phys.
100
,
4487
(
1994
).
71.
R.
Wesendrup
,
J. K.
Laerdahl
, and
P.
Schwerdtfeger
,
J. Chem. Phys.
110
,
9457
(
1999
).
72.
N.
Werthamer
,
E.
Helfand
, and
P.
Hohenberg
,
Phys. Rev.
147
,
295
(
1966
).
74.
G.
Dresselhaus
,
Phys. Rev.
100
,
580
(
1955
).
75.
R.
Pal
,
L. M.
Wang
,
W.
Huang
,
L. S.
Wang
, and
X. C.
Zeng
,
J. Chem. Phys.
134
,
054306
(
2011
).
76.
Y. L.
Wang
,
H. J.
Zhai
,
L.
Xu
,
J.
Li
, and
L. S.
Wang
,
J. Phys. Chem. A
114
,
1247
(
2010
).
77.
W.
Huang
,
S.
Bulusu
,
R.
Pal
,
X. C.
Zeng
, and
L. S.
Wang
,
ACS Nano
3
,
1225
(
2009
).
78.
W.
Huang
,
R.
Pal
,
L. M.
Wang
,
X. C.
Zeng
, and
L. S.
Wang
,
J. Chem. Phys.
132
,
054305
(
2010
).
79.
R.
Pal
,
W.
Huang
,
Y. L.
Wang
,
H. S.
Hu
,
S.
Bulusu
,
X. G.
Xiong
,
J.
Li
,
L. S.
Wang
, and
X. C.
Zeng
,
J. Phys. Chem. Lett.
2
,
2288
(
2011
).
80.
W.
Huang
,
S.
Bulusu
,
R.
Pal
,
X. C.
Zeng
, and
L. S.
Wang
,
J. Chem. Phys.
131
,
234305
(
2009
).
81.
A. E.
Reed
,
L. A.
Curtiss
, and
F.
Weinhold
,
Chem. Rev.
88
,
899
(
1988
).
82.
A. E.
Reed
and
F.
Weinhold
,
J. Chem. Phys.
78
,
4066
(
1983
).
83.
C.
Hättig
,
D. P.
Tew
, and
A.
Köhn
,
J. Chem. Phys.
132
,
231102
(
2010
).
84.
T. B.
Adler
,
G.
Knizia
, and
H. J.
Werner
,
J. Chem. Phys.
127
,
221106
(
2007
).
85.
G.
Knizia
,
T. B.
Adler
, and
H. J.
Werner
,
J. Chem. Phys.
130
,
054104
(
2009
).
86.
D. P.
Tew
and
W.
Klopper
,
Mol. Phys.
108
,
315
(
2010
).
87.
H. J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
, and
M.
Schütz
,
WIREs Comput. Mol. Sci.
2
,
242
(
2012
).
88.
See supplementary material at http://dx.doi.org/10.1063/1.4852179 for more information on top-several low-lying structures of Aun (n = 2–11) clusters, structural parameters of the lowest-energy AunC (n = 1–10) clusters, main methods, basis sets, and software packages used for optimization and single-point energy calculations, and simulated photoelectron spectra of AunC (n = 1–10) clusters.
89.
F.
Remacle
and
E.
Kryachko
,
J. Chem. Phys.
122
,
044304
(
2005
).
90.
H.
Häkkinen
and
U.
Landman
,
Phys. Rev. B
62
,
R2287
(
2000
).
91.
K.
Taylor
,
C.
Pettiette-Hall
,
O.
Cheshnovsky
, and
R.
Smalley
,
J. Chem. Phys.
96
,
3319
(
1992
).
92.
S. K.
Sahoo
,
S.
Nigam
,
P.
Sarkar
, and
C.
Majumder
,
Chem. Phys. Lett.
543
,
121
(
2012
).
93.
F. Y.
Naumkin
,
Comput. Theor. Chem.
1021
,
191
(
2013
).
94.
R.
Pal
,
L. M.
Wang
,
W.
Huang
,
L. S.
Wang
, and
X. C.
Zeng
,
J. Am. Chem. Soc.
131
,
3396
(
2009
).
95.
J.
Ho
,
K. M.
Ervin
, and
W.
Lineberger
,
J. Chem. Phys.
93
,
6987
(
1990
).
96.
97.
98.
I.
Mayer
,
Int. J. Quantum Chem.
29
,
477
(
1986
).
99.
I.
Mayer
,
Theor. Chim. Acta
67
,
315
(
1985
).
100.
C.
Majumder
and
S.
Kulshreshtha
,
Phys. Rev. B
69
,
075419
(
2004
).

Supplementary Material

You do not currently have access to this content.