The electron transport properties of the cubic quantum dot, (PbS)32, are investigated. The stability of the quantum dot has been established by recent scanning tunneling microscope experiments [B. Kiran, A. K. Kandalam, R. Rallabandi, P. Koirala, X. Li, X. Tang, Y. Wang, H. Fairbrother, G. Gantefoer, and K. Bowen, J. Chem. Phys.136(

2
), 024317 (2012)]. In spite of the noticeable energy band gap (∼2 eV), a relatively high tunneling current for (PbS)32 is predicted affirming the observed bright images for (PbS)32. The calculated I-V characteristics of (PbS)32 are predicted to be substrate-dependent; (PbS)32 on the Au (001) exhibits the molecular diode-like behavior and the unusual negative differential resistance effect, though this is not the case with (PbS)32 on the Au (110). Appearance of the conduction channels associated with the hybridized states of quantum dot and substrate together with their asymmetric distribution at the Fermi level seem to determine the tunneling characteristics of the system.

1.
F. W.
Wise
,
Acc. Chem. Res.
33
,
773
(
2000
).
2.
L.
Bakueva
,
S.
Musikhi
,
M. A.
Hines
,
T.-W. F.
Chang
,
M.
Tozolov
,
G. D.
Scholes
, and
E. H.
Sargent
,
Appl. Phys. Lett.
82
,
2895
(
2003
).
3.
M. A.
Hines
and
G. D.
Scholes
,
Adv. Mater.
15
,
1844
(
2003
).
4.
L.
Bakueva
,
I.
Gorelikov
,
S.
Musikhin
,
X. S.
Zhao
,
E. H.
Sargent
, and
E.
Kumacheva
,
Adv. Mater.
16
,
926
(
2004
).
5.
A. R.
Watt
,
P.
Meredith
,
J. D.
Riches
,
S.
Atkinson
, and
H.
Rubinsztein-Dunlop
,
Curr. Appl. Phys.
4
,
320
(
2004
).
6.
S. A.
McDonald
,
G.
Konstantatos
,
S.
Zhang
,
P. W.
Cyr
,
E. J. D.
Klem
,
L.
Levina
, and
E. H.
Sargent
,
Nature Mater.
4
,
138
(
2005
).
7.
8.
R. J.
Ellingson
,
M. C.
Beard
,
J. C.
Johnson
,
P.
Yu
,
O. L.
Micic
,
A. J.
Nozik
,
A.
Shabaev
, and
A. L.
Efros
,
Nano Lett.
5
,
865
(
2005
).
9.
J. J.
Peterson
and
T. D.
Krauss
,
Nano Lett.
6
,
510
(
2006
).
10.
H.
Cao
,
G.
Wang
,
S.
Zhang
, and
X.
Zhang
,
Nanotechnology
17
,
3280
(
2006
).
11.
J.-S.
Lee
,
E. V.
Shevchenko
, and
D. V.
Talapin
,
J. Am. Chem. Soc.
130
,
9673
(
2008
).
12.
E.
Istrate
,
S.
Hoogland
,
V.
Sukhovatkin
,
L.
Levina
,
S.
Myskrog
,
P. W. E.
Smith
, and
E. H.
Sargnet
,
J. Phys. Chem. B
112
,
2757
(
2008
).
13.
S. Y.
Jang
,
Y. M.
Song
,
H. S.
Kim
,
Y. J.
Cho
,
Y. S.
Seo
,
G. B.
Jung
,
C.-W.
Lee
,
J.
Park
,
M.
Jung
,
J.
Kim
,
B.
Kim
,
J.-G.
Kim
, and
Y.-J.
Kim
,
ACS Nano
4
,
2391
(
2010
).
14.
S.
Mandal
and
R.
Pati
,
Phys. Rev. B
84
,
115306
(
2011
).
15.
H.
Khan
,
U.
Thupakula
,
A.
Dalui
,
S.
Maji
,
A.
Debangshi
, and
S.
Acharya
,
J. Phys. Chem. C
117
,
7934
(
2013
).
16.
S.
Wu
,
H.
Zeng
, and
Z. A.
Schelly
,
Langmuir
21
,
686
(
2005
).
17.
H.
Zeng
,
Z. A.
Schelly
,
K.
Ueno-Noto
, and
D. S.
Marynick
,
J. Phys. Chem. A
109
,
1616
(
2005
).
18.
J.
He
,
C.
Liu
,
F.
Li
,
R.
Sa
, and
K.
Wu
,
Chem. Phys. Lett.
457
,
163
(
2008
).
19.
B.
Kiran
,
A. K.
Kandalam
,
R.
Rallabandi
,
P.
Koirala
,
X.
Li
,
X.
Tang
,
Y.
Wang
,
H.
Fairbrother
,
G.
Gantefoer
, and
K.
Bowen
,
J. Chem. Phys.
136
(
2
),
024317
(
2012
).
20.
G.
Kresse
and
J.
Furthmuller
,
Phys. Rev. B
54
(
16
),
11169
(
1996
).
21.
J. P.
Perdew
,
J. A.
Chevary
,
S. H.
Vosko
,
K. A.
Jackson
,
M. R.
Pederson
,
D. J.
Singh
, and
C.
Fiolhais
,
Phys. Rev. B
46
,
6671
(
1992
).
22.
H.
He
,
R.
Pandey
,
R.
Pati
, and
S. P.
Karna
,
Phys. Rev. B
73
(
19
),
195311
(
2006
).
23.
J.
Tersoff
and
D. R.
Hamann
,
Phys. Rev. Lett.
50
(
25
),
1998
(
1983
).
24.
W.
Tang
,
E.
Sanville
, and
G.
Henkelman
,
J. Phys. Condens. Matter
21
(
8
),
084204
(
2009
).
25.
See supplementary material at http://dx.doi.org/10.1063/1.4849136 for supporting figures.
26.
L.
Bolotov
,
N.
Uchida
, and
T.
Kanayama
,
Eur. Phys. J. D
16
(
1–3
),
271
(
2001
).
27.
S.
Mandal
and
R.
Pati
,
ACS Nano
6
(
4
),
3580
(
2012
).
28.
P.
Bedrossian
,
D. M.
Chen
,
K.
Mortensen
, and
J. A.
Golovchenko
,
Nature (London)
342
(
6247
),
258
(
1989
).

Supplementary Material

You do not currently have access to this content.